/cryptotradr

Primary LanguageJupyter NotebookGNU General Public License v3.0GPL-3.0

CryptoTrader

speaks for itself

current analysis

here

installation

conda install with conda create --name cryt310 --file requirements2.txt

install with pip3 install -r requirements2.txt

uses python 3.10

install ta lib with conda install -c conda-forge ta-lib

pip install requests schedule pandas mplfinance numpy

commands

install these

conda create -n cryt310 python=3.10
conda activate cryt310
pip install -q numpy requests schedule pandas mplfinance notebook
pip install python-binance
conda install -y -c conda-forge ta-lib

test these

python testimports.py
python test_trades.py

todos

  • fix entry for times when entry was before initialisation ( need to check )

  • look for tickers at 5m interval with more than 9% (to 6%) change. next ticks might be high.

    • see STMXUSDT at 2023/7/23 12:30
  • restructure the code so that its more modular. the followings should be kept seperate

    • download/get data, identify signals, act on signals
    • this way, (2) and (3) can be backtested
  • ✅ rewrite run_trades_ver2.py to scale up to ~750 ticker/interval pairs per 5 minutes

  • ✅ fix run_trades_ver2, dont Upslow on initial run?

  • ✅ reduce status calls to discord ping.

  • ✅ limit number of positions? using binanceexceptions

  • ✅ some code to validate the timing of prev candlestick

  • ✅ a script to start/restart all runs

  • ✅ run multiple signals at the same time.

  • ✅ try binance apis for trading

  • ✅ update historical data to recent months

  • ✅ report reason for exit, either TP,SL,Exitsignal

idea todos

  • from 9_0_5
  • do predictions for top 10 tickers at 5m resolution
  • then use hourly/30m-ly 24hr change to find datasets to validate this analysis/prediction

non-urgent todos

  • get_data to return more live data then just 1000
  • find tickerpairs present on MT4 trading platform.
  • optimise parameters for tickerpairs.

commands

conda activate cryt310 cd Documents\Github\cryptotradr python aver6_run_trades.py

python aver5_run_trades.py 0 40 5m python aver5_run_trades.py 80 120 30m