Libra
This is the main page of the computational chemistry methodology discovery library, Libra The program website is here
Info
More:
Due to the increased volume of technical questions about installing and using the Libra, Libra-X, Pyxaid and Pyxaid2 codes, I have decided to create a convenient public forum for all users with the intent:
-
to share my replies with not only a single user that have a trouble, but also other potential users who may found that information useful;
-
so that the users/developers who have had some experience with the code would be able to share their knowledge and skills with others;
Developers and Contributors
-
Dr. Alexey Akimov (University at Buffalo, link )
The main developer and maintainer of the code -
Mr. Brendan Smith (University at Buffalo) Entangled trajectories Hamiltonian, NA-MD with spin-orbit coupling, NBRA workflows, BL-LZ NA-MD tutorials and examples, Libra/DFTB+, Libra/QE, Libra/ErgoSCF, Libra/CP2K, and Libra/Gaussian interfaces
-
Mr. Mohammad Shakiba (Shahid Bahonar University of Kerman, Iran) Cube file processing scripts, Libra/CP2K and Libra/Gaussian interfaces
-
Mrs. Story Temen (University at Buffalo) Implementation and testing of the HEOM codes
-
Dr. Wei Li (Hunan Agricultural University) NA-MD with spin-orbit coupling
-
Dr. Kosuke Sato (Toyota Research Lab) State reordering scripts, Libra/GAMESS interface (Libra-X)
-
Dr. Ekadashi Pradhan (York University) Libra/QE interface, delta-SCF NA-M (Libra-X)
-
Dr. Amber Jain (Indian Institute of Technology, Bombay) Implementation and testing of the HEOM codes
-
Dr. Xiang Sun (Indian Institute of Technology, Bombay) Implementation and testing of the FGR codes
References
This code is provided in the hope it will be useful.
If you use the code in your research, please cite the following paper(s):
Parers that describe Libra and its features
-
Initial Implementation Akimov, A. V. "Libra: An open-Source 'methodology discovery' library for quantum and classical dynamics simulations" J. Comput. Chem. 2016 37, 1626-1649
-
Phase correction, Ehrenfest dynamics details, basis transformations (see the SI) Akimov, A. V.; "A Simple Phase Correction Makes a Big Difference in Nonadiabatic Molecular Dynamics" J. Phys. Chem. Lett. 2018 9, 6096-6102
-
Belyaev-Lebedev-Landau-Zener Surface Hopping within the Neglect of Back-Reaction Approximation Smith, B.; Akimov, A. V. "Hot Electron Cooling in Silicon Nanoclusters via Landau-Zener Non-Adiabatic Molecular Dynamics: Size Dependence and Role of Surface Termination" J. Phys. Chem. Lett. 2020 11, 1456-1465
-
HEOM implementation Temen, S.; Jain, A.; Akimov, A. V. "Hierarchical equations of motion in the Libra software package" Int. J. Quant. Chem. 2020
You may find the following papers useful examples
Parers that utilize Libra
-
Formulation of a fragment-based NA-MD Akimov, A. V. "Nonadiabatic Molecular Dynamics with Tight-Binding Fragment Molecular Orbitals" J. Chem. Theory Comput. 2016 12, 5719-5736
-
Quasi-stochastic Hamiltonian for longer NA-MD Akimov, A. V.; "Stochastic and Quasi-Stochastic Hamiltonians for Long-Time Nonadiabatic Molecular Dynamics" J. Phys. Chem. Lett. 2017 8, 5190-5195
-
Entrangled-trajectories Hamiltonian dynamics to capture quantum effects of nuclei Smith, B. A.; Akimov, A. V. "Entangled trajectories Hamiltonian dynamics for treating quantum nuclear effects" J. Chem. Phys. 2018 148, 144106
-
Inclusion of the Spin-orbit coupling in NA-MD Li, W.; Zhou, L.; Prezhdo, O. V.; Akimov, A. V. "Spin-Orbit Interactions Greatly Accelerate Nonradiative Dynamics in Lead Halide Perovskites" ACS Energy Lett. 2018 3, 2159-2166