Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" (NeurIPS 2021) by Sangwoo Mo*, Hyunwoo Kang*, Kihyuk Sohn, Chun-Liang Li, and Jinwoo Shin.
Install required libraries.
pip install -r requirements.txt
Download datasets in /data
(e.g., /data/COCO
).
Pretrained models are available at google drive.
Logs will be saved in logs/{dataset}_{model}_{arch}_b{global_batch_size}
directory,
where global_batch_size = num_nodes * gpus * batch_size
(default batch size = 64 * 4 = 256
).
Train vanilla models (change dataset
and ft_datasets
as cub
or in9
).
python pretrain.py --dataset coco --model moco --arch resnet18\
--ft_datasets coco --batch_size 64 --max_epochs 800
Pre-compute bounding boxes for object-aware random crop.
python inference.py --mode save_box --model moco --arch resnet18\
--ckpt_name coco_moco_r18_b256 --dataset coco\
--expand_res 2 --cam_iters 10 --apply_crf\
--save_path data/boxes/coco_cam-r18.txt
Pre-compute masks for background mixup.
python inference.py --mode save_mask --model moco --arch resnet18\
--ckpt_name in9_moco_r18_256 --dataset in9\
--expand_res 1 --cam_iters 1\
--save_path data/masks/in9_cam-r18
Train contextual debiased model with object-aware random crop.
python pretrain.py --dataset coco-box-cam-r18 --model moco --arch resnet18\
--ft_datasets coco --batch_size 64 --max_epochs 800
Train background debiased model with background mixup.
python pretrain.py --dataset in9-mask-cam-r18 --model moco_bgmix --arch resnet18\
--ft_datasets in9 --batch_size 64 --max_epochs 800
python inference.py --mode lineval --model moco --arch resnet18\
--ckpt_name coco_moco_r18_b256 --dataset coco
python inference.py --mode seg --model moco --arch resnet18\
--ckpt_name cub200_moco_r18_b256 --dataset cub200\
--expand_res 2 --cam_iters 10 --apply_crf
mv detection
python convert-pretrain-to-detectron2.py coco_moco_r50.pth coco_moco_r50.pkl
python train_net.py --config-file configs/coco_R_50_C4_2x_moco.yaml --num-gpus 8\
MODEL.WEIGHTS weights/coco_moco_r18.pkl