Bagel is a robust and unsupervised KPI anomaly detection algorithm based on conditional variational autoencoder.
This is an implementation of Bagel in the latest PyTorch. The original PyTorch 0.4 implementation can be found at NetManAIOps/Bagel.
A better implementation of Bagel in TensorFlow 2 can be found at AlumiK/bagel-tensorflow, which has much better performance.
Normally, pip
will automatically install required PyPI dependencies when you install this package:
-
For development use:
git clone https://github.com/AlumiK/bagel-torch.git cd bagel-torch pip install -e .[dev]
-
For production use:
pip install git+https://github.com/AlumiK/bagel-torch.git
An environment.yml
is also provided if you prefer conda
to manage dependencies:
conda env create -f environment.yml
KPI data must be stored in csv files in the following format:
timestamp, value, label
1469376000, 0.847300274, 0
1469376300, -0.036137314, 0
1469376600, 0.074292384, 0
1469376900, 0.074292384, 0
1469377200, -0.036137314, 0
1469377500, 0.184722083, 0
1469377800, -0.036137314, 0
1469378100, 0.184722083, 0
timestamp
: timestamps in seconds (10-digit).label
:0
for normal points,1
for anomaly points.- Labels are used for evaluation and are not required in the production environment.
A sample script can be found at sample/main.py
:
cd sample
python main.py
To prepare the data:
import bagel
kpi = bagel.utils.load_kpi('kpi_data.csv')
kpi.complete_timestamp()
train_kpi, valid_kpi, test_kpi = kpi.split((0.49, 0.21, 0.3))
train_kpi, mean, std = train_kpi.standardize()
valid_kpi, _, _ = valid_kpi.standardize(mean=mean, std=std)
test_kpi, _, _ = test_kpi.standardize(mean=mean, std=std)
To construct a Bagel model, train the model, and use the trained model for prediction:
import bagel
model = bagel.Bagel()
model.fit(kpi=train_kpi.use_labels(0.), validation_kpi=valid_kpi, epochs=EPOCHS)
anomaly_scores = model.predict(test_kpi)
To save and restore a trained model:
# To save a trained model
model.save(path)
# To load a pre-trained model
import bagel
model = bagel.Bagel()
model.load(path)
@inproceedings{conf/ipccc/LiCP18,
author = {Zeyan Li and
Wenxiao Chen and
Dan Pei},
title = {Robust and Unsupervised {KPI} Anomaly Detection Based on Conditional
Variational Autoencoder},
booktitle = {37th {IEEE} International Performance Computing and Communications
Conference, {IPCCC} 2018, Orlando, FL, USA, November 17-19, 2018},
pages = {1--9},
publisher = {{IEEE}},
year = {2018},
url = {https://doi.org/10.1109/PCCC.2018.8710885},
doi = {10.1109/PCCC.2018.8710885}
}