/nbdt-pytorch-image-models

Neural-Backed Decision Tree sample integration with pytorch-image-models

Primary LanguagePythonApache License 2.0Apache-2.0

Project Page  //  Paper  //  No-code Web Demo  //  Colab Notebook

Wondering what neural-backed decision trees are? See the Neural-Backed Decision Trees repository.

Table of Contents

Explanation

The full diff between the original repository pytorch-image-models and the integrated version is here, using Github's compare view. There are a total of 9 lines added:

  1. Generate hierarchy (0 lines): Start by generating an induced hierarchy. We use a hierarchy induced from EfficientNet-B7.
nbdt-hierarchy --dataset=Imagenet1000 --arch=efficientnet_b7b
  1. Wrap loss during training (3 lines): In train.py, we add the custom loss function. This is a wrapper around the existing loss functions.
from nbdt.loss import SoftTreeSupLoss
train_loss_fn = SoftTreeSupLoss(criterion=train_loss_fn, dataset='Imagenet1000', tree_supervision_weight=10, hierarchy='induced-efficientnet_b7b')
validate_loss_fn = SoftTreeSupLoss(criterion=validate_loss_fn, dataset='Imagenet1000', tree_supervision_weight=10, hierarchy='induced-efficientnet_b7b')
  1. Wrap model during inference (6 lines): In validate.py, we add NBDT inference. This is a wrapper around the existing model. We actually spend 4 lines adding and processing a custom --nbdt argument, so the actual logic for adding NBDT inference is only 2 lines.
parser.add_argument('--nbdt', choices=('none', 'soft', 'hard'), default='none',
                    help='Type of NBDT inference to run')
...
from nbdt.model import SoftNBDT, HardNBDT
if args.nbdt != 'none':
    cls = SoftNBDT if args.nbdt == 'soft' else HardNBDT
    model = cls(model=model, dataset='Imagenet1000', hierarchy='induced-efficientnet_b7b')

Training and Evaluation

To reproduce our results, make sure to checkout the nbdt branch.

# 1. git clone the repository
git clone git@github.com:alvinwan/nbdt-pytorch-image-models.git  # or http addr if you don't have private-public github key setup
cd nbdt-pytorch-image-models

# 2. install requirements
pip install -r requirements.txt

# 3. checkout branch with nbdt integration
git checkout nbdt

Training: For our ImageNet results, we use the hyperparameter settings reported for ImageNet-EdgeTPU-Small found in the original README: EfficientNet-ES (EdgeTPU-Small). Note the accuracy reported at this link is the average of 8 checkpoints. However, we use only 1 checkpoint, so we compare against the best single-checkpoint 77.23% result for EfficientNet-ES reported in the official EfficientNet-EdgeTPU repository. The hyperparameter settings reported in the first link are reproduced below:

./distributed_train.sh 8 /data/imagenetwhole/ilsvrc2012/ --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064

Validation: To run inference, we use the following command. The majority of this command is typical for this repository. We simply add an extra --nbdt flag at the end for the type of NBDT we wish to run.

python validate.py /data/imagenetwhole/ilsvrc2012/val/ --model efficientnet_es --checkpoint=./output/train/20200319-185245-efficientnet_es-224/model_best.pth.tar --nbdt=soft

Results

NofE, shown below, was the strongest competing decision-tree-based method. Note that our NBDT-S outperforms NofE by ~14%. The acccuracy of the original neural network, EfficientNet-ES, is also shown. Our decision tree's accuracy is within 2% of the original neural network's accuracy.

NBDT-S (Ours) NBDT-H (Ours) NofE EfficientNet-ES
ImageNet Top-1 75.30% 74.79% 61.29% 77.23%

See the original Neural-Backed Decision Trees results for a full list of all baselines. You can download our pretrained model and all associated logs at v1.0.

For more information, return to the original Neural-Backed Decision Trees repository.