Data cleaning tools
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
Dataset = pd.read_csv('Data.csv')
x = Dataset.iloc[:,:-1].values
y = Dataset.iloc[:,-1].values
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values = np.nan, strategy='mean')
imputer.fit(x[:,1:3])
x[:,1:3] = imputer.transform(x[:,1:3])
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(),[0])], remainder='passthrough')
x = np.array(ct.fit_transform(x))
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit_transform(y)
print(y)
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 1)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train[:, 3:] = sc.fit_transform(x_train[:, 3:])
x_test[:, 3:] = sc.transform(x_test[:, 3:])