/prism-finetuned

Primary LanguagePythonOtherNOASSERTION

Code for the research paper "Trained MT Metrics Learn to Cope with Machine-translated References"

Installation

mt-metrics-eval

  • python -m mt_metrics_eval.mtme --download (Puts ~1G of data into $HOME/.mt-metrics-eval)

Downloading the pre-trained model

Preparing the data

Downloading MQM data

See scripts/download_data.sh

Extracting relative rankings

  • mkdir data/wmt_rr
  • python scripts/convert_mqm_to_relative_ranking_data.py

Concatenating the language pairs and creating a train–valid split

See scripts/create_data_split.sh

Preprocessing data for Prism fine-tuning with fairseq

  • mkdir data/prism_finetuning_data
  • python scripts/prepare_prism_finetuning_data.py (might take a while)

Fine-tuning

  • bash scripts/finetune_main.sh

Metric usage

Please refer to the reference implementation of Prism (https://github.com/thompsonb/prism) for instructions on using the metric

Meta-evaluation

  • pip install -r requirements-eval.txt
  • python scripts/run_meta_evaluation.py

Post-editese experiments

  • python post_editese/scripts/run_.py

Citation

Please cite this work as:

@misc{vamvasetal2023trainedmetrics,
      title={Trained MT Metrics Learn to Cope with Machine-translated References},
      author={Vamvas, Jannis and Domhan, Tobias and Trenous, Sony and Sennrich, Rico and Hasler, Eva},
      booktitle={Proceedings of the Eighth Conference on Machine Translation (WMT)},
      year={2023}
}

Security

See CONTRIBUTING for more information.

License

This library is licensed under the CC-BY-NC-4.0 License.