Code for the research paper "Trained MT Metrics Learn to Cope with Machine-translated References"
- Install PyTorch
- cd .. && pip install -r requirements.txt
- pip install git+https://github.com/google-research/mt-metrics-eval
- python -m mt_metrics_eval.mtme --download (Puts ~1G of data into $HOME/.mt-metrics-eval)
- wget http://data.statmt.org/prism/m39v1.tar
- tar xf m39v1.tar
- mkdir models
- mv m39v1 models
See scripts/download_data.sh
- mkdir data/wmt_rr
- python scripts/convert_mqm_to_relative_ranking_data.py
See scripts/create_data_split.sh
- mkdir data/prism_finetuning_data
- python scripts/prepare_prism_finetuning_data.py (might take a while)
- bash scripts/finetune_main.sh
Please refer to the reference implementation of Prism (https://github.com/thompsonb/prism) for instructions on using the metric
- pip install -r requirements-eval.txt
- python scripts/run_meta_evaluation.py
- python post_editese/scripts/run_.py
Please cite this work as:
@misc{vamvasetal2023trainedmetrics,
title={Trained MT Metrics Learn to Cope with Machine-translated References},
author={Vamvas, Jannis and Domhan, Tobias and Trenous, Sony and Sennrich, Rico and Hasler, Eva},
booktitle={Proceedings of the Eighth Conference on Machine Translation (WMT)},
year={2023}
}
See CONTRIBUTING for more information.
This library is licensed under the CC-BY-NC-4.0 License.