/linux-on-litex-vexriscv

Experiments with Linux on LiteX-VexRiscv

Primary LanguagePython

Experiments with Linux on LiteX-VexRiscv

Note: Tested on Ubuntu 18.04.

Intro:

In this repository, we experiment running Linux with VexRiscv CPU, a 32-bits Linux Capable RISC-V CPU written in Spinal HDL. A SoC around the VexRiscv CPU is created using LiteX as the SoC builder and LiteX's cores written in Migen Python DSL (LiteDRAM, LiteEth, LiteSDCard). All the components used to create the SoC are open-source and the flexibility of Spinal HDL/Migen allow targeting easily very various FPGA devices/boards: Lattice, Altera, Xilinx, Microsemi FPGAs with SDRAM/DDR/DDR2/DDR3/DDR4 RAMs, RMII/MII/RGMII/1000BASE-X Ethernet PHYs. On Lattice ECP5 FPGAs, the open source toolchain allows creating full open-source SoC with open-source cores and toolchain!

This project demonstrates how high level HDLs (Spinal HDL, Migen) enable new possibilities and complement each other. Results shown here are the results of a productive collaboration between open-source communities.

Demo:

asciicast

Supported boards:

Name FPGA Family FPGA device CPU Frequency RAM Flash Ethernet SDCard
Arty Xilinx Artix7 XC7A35T 100MHz 16-bits 256MB DDR3 16MB QSPI 100Mbps MII No
NeTV2 Xilinx Artix7 XC7A35T 100MHz 32-bits 512MB DDR3 16MB QSPI* 100Mbps RMII Yes*
Genesys2 Xilinx Kintex7 XC7K325T 125MHz 32-bits 1GB DDR3 32MB QSPI* 1Gbps RGMII* Yes*
KCU105 Xilinx KintexU XCKU40 125MHz 64-bits 1GB DDR4 64MB QSPI* 1Gbps 1000BASE-X Yes*
Nexys4DDR Xilinx Artix7 XC7A100T 100MHz 16-bits 128MB DDR2 16MB QSPI* 100Mbps RMII Yes*
Nexys Video Xilinx Artix7 XC7A200T 100MHz 16-bits 512MB DDR3 32MB QSPI* 1Gbps RMII* Yes*
miniSpartan6+ Xilinx Spartan6 XC6SLX25 80MHz 16-bits 32MB SDR 8MB QSPI* No Yes*
Versa ECP5 Lattice ECP5 LFE5UM5G 45F 75MHz 16-bits 128MB DDR3 16MB QSPI* 1Gbps RGMII No
ULX3S Lattice ECP5 LFE5U 45F 50MHz 16-bits 32MB SDR 4MB QSPI* No Yes*
De0Nano Intel Cyclone4 EP4CE22F 50MHz 16-bits 32MB SDR No No No
Avalanche Microsemi PolarFire MPF300TS 100MHz 16-bits 256MB DDR3 8MB QSPI* 1Gbps RGMII* No

Note: *=present on the board but not yet supported.

Note: Avalanche support can be found in RISC-V - Getting Started Guide thanks to Antmicro.

Pre-built Bitstreams/Linux images

Pre-built bistreams for the supported board and pre-built Linux images can be found in the linux-on-litex-vexriscv-prebuilt repository and allow doing tests without the need to compile anything.

To get the pre-built bitstreams/images, clone the prebuilt repository near the linux-on-litex-vexriscv repository and copy all the files from prebuilt directory to the linux-on-litex-vexriscv directory:

$ git clone https://github.com/enjoy-digital/linux-on-litex-vexriscv-prebuilt
$ cp -r linux-on-litex-vexriscv-prebuilt/* linux-on-litex-vexriscv

Installing LiteX

$ wget https://raw.githubusercontent.com/enjoy-digital/litex/master/litex_setup.py
$ chmod +x litex_setup.py
$ ./litex_setup.py init install --user

Installing a RISC-V toolchain

$ wget https://static.dev.sifive.com/dev-tools/riscv64-unknown-elf-gcc-8.1.0-2019.01.0-x86_64-linux-ubuntu14.tar.gz
$ tar -xvf riscv64-unknown-elf-gcc-8.1.0-2019.01.0-x86_64-linux-ubuntu14.tar.gz
$ export PATH=$PATH:$PWD/riscv64-unknown-elf-gcc-8.1.0-2019.01.0-x86_64-linux-ubuntu14/bin/

Installing Verilator (only needed for simulation)

$ apt install verilator
$ apt install libevent-dev libjson-c-dev

Installing OpenOCD (only needed for hardware test)

$ sudo apt install libtool automake pkg-config libusb-1.0-0-dev
$ git clone https://github.com/ntfreak/openocd.git
$ cd openocd
$ ./bootstrap
$ ./configure --enable-ftdi
$ make
$ sudo make install

Running the LiteX simulation

$ ./sim.py

You should see Linux booting and be able to interact with it:

        __   _ __      _  __
       / /  (_) /____ | |/_/
      / /__/ / __/ -_)>  <
     /____/_/\__/\__/_/|_|

 (c) Copyright 2012-2019 Enjoy-Digital
 (c) Copyright 2012-2015 M-Labs Ltd

 BIOS built on May  2 2019 18:58:54
 BIOS CRC passed (97ea247b)

--============ SoC info ================--
CPU:       VexRiscv @ 1MHz
ROM:       32KB
SRAM:      4KB
MAIN-RAM:  131072KB

--========= Peripherals init ===========--

--========== Boot sequence =============--
Booting from serial...
Press Q or ESC to abort boot completely.
sL5DdSMmkekro
Timeout
Executing booted program at 0x20000000
--============= Liftoff! ===============--
VexRiscv Machine Mode software built May  3 2019 19:33:43
--========== Booting Linux =============--
[    0.000000] No DTB passed to the kernel
[    0.000000] Linux version 5.0.9 (florent@lab) (gcc version 8.3.0 (Buildroot 2019.05-git-00938-g75f9fcd0c9)) #1 Thu May 2 17:43:30 CEST 2019
[    0.000000] Initial ramdisk at: 0x(ptrval) (8388608 bytes)
[    0.000000] Zone ranges:
[    0.000000]   Normal   [mem 0x00000000c0000000-0x00000000c7ffffff]
[    0.000000] Movable zone start for each node
[    0.000000] Early memory node ranges
[    0.000000]   node   0: [mem 0x00000000c0000000-0x00000000c7ffffff]
[    0.000000] Initmem setup node 0 [mem 0x00000000c0000000-0x00000000c7ffffff]
[    0.000000] elf_hwcap is 0x1100
[    0.000000] Built 1 zonelists, mobility grouping on.  Total pages: 32512
[    0.000000] Kernel command line: mem=128M@0x40000000 rootwait console=hvc0 root=/dev/ram0 init=/sbin/init swiotlb=32
[    0.000000] Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
[    0.000000] Inode-cache hash table entries: 8192 (order: 3, 32768 bytes)
[    0.000000] Sorting __ex_table...
[    0.000000] Memory: 119052K/131072K available (1957K kernel code, 92K rwdata, 317K rodata, 104K init, 184K bss, 12020K reserved, 0K cma-reserved)
[    0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
[    0.000000] NR_IRQS: 0, nr_irqs: 0, preallocated irqs: 0
[    0.000000] clocksource: riscv_clocksource: mask: 0xffffffffffffffff max_cycles: 0x114c1bade8, max_idle_ns: 440795203839 ns
[    0.000155] sched_clock: 64 bits at 75MHz, resolution 13ns, wraps every 2199023255546ns
[    0.001515] Console: colour dummy device 80x25
[    0.008297] printk: console [hvc0] enabled
[    0.009219] Calibrating delay loop (skipped), value calculated using timer frequency.. 150.00 BogoMIPS (lpj=300000)
[    0.009919] pid_max: default: 32768 minimum: 301
[    0.016255] Mount-cache hash table entries: 1024 (order: 0, 4096 bytes)
[    0.016802] Mountpoint-cache hash table entries: 1024 (order: 0, 4096 bytes)
[    0.044297] devtmpfs: initialized
[    0.061343] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 7645041785100000 ns
[    0.061981] futex hash table entries: 256 (order: -1, 3072 bytes)
[    0.117611] clocksource: Switched to clocksource riscv_clocksource
[    0.251970] Unpacking initramfs...
[    2.005474] workingset: timestamp_bits=30 max_order=15 bucket_order=0
[    2.178440] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 254)
[    2.178909] io scheduler mq-deadline registered
[    2.179271] io scheduler kyber registered
[    3.031140] random: get_random_bytes called from init_oops_id+0x4c/0x60 with crng_init=0
[    3.043743] Freeing unused kernel memory: 104K
[    3.044070] This architecture does not have kernel memory protection.
[    3.044472] Run /init as init process
mount: mounting tmpfs on /dev/shm failed: Invalid argument
mount: mounting tmpfs on /tmp failed: Invalid argument
mount: mounting tmpfs on /run failed: Invalid argument
Starting syslogd: OK
Starting klogd: OK
Initializing random number generator... [    4.374589] random: dd: uninitialized urandom read (512 bytes read)
done.
Starting network: ip: socket: Function not implemented
ip: socket: Function not implemented
FAIL


Welcome to Buildroot
buildroot login: root
login[48]: root login on 'hvc0'
# help
Built-in commands:
------------------
	. : [ [[ alias bg break cd chdir command continue echo eval exec
	exit export false fg getopts hash help history jobs kill let
	local printf pwd read readonly return set shift source test times
	trap true type ulimit umask unalias unset wait
#
#

Running on hardware

Build the FPGA bitstream (optional)

The prebuilt bitstreams for the supported boards are provided, so you can just use them for quick testing, if you want to rebuild the bitstreams you will need to install the toolchain for your FPGA:

FPGA family Toolchain
Xilinx Ultrascale Vivado
Xilinx 7-Series Vivado
Xilinx Spartan6 ISE
Lattice ECP5 Yosys/Trellis/Nextpnr
Altera Cyclone4 Quartus Prime

Once installed, build the bitstream with:

$ ./make.py --board=XXYY --build

Load the FPGA bitstream

To load the bitstream to you board, run:

$ ./make.py --board=XXYY --load

Load the Linux images over Serial

All the boards support Serial loading of the Linux images and this is the only way to load them when the board does not have others communications interfaces or storage capability.

To load the Linux images over Serial, use the lxterm terminal/tool provided by LiteX and run:

$ lxterm --images=images.json /dev/ttyUSBX

The images should load and you should see Linux booting :)

Note: lxterm is automatically installed with LiteX. Note: since on some boards JTAG/Serial is shared, when you will run lxterm after loading the board, the BIOS serialboot will already have timed out. You will need to press Enter, see if you have the BIOS prompt and type reboot.

Since loading over Serial is working for all boards, this is the recommended way to do initial tests even if your board has more capabilities.

Load the Linux images over TFTP

For boards that have Ethernet, the Linux images can be loaded over TFTP. You need to copy the files in buildroot directory and emulator/emulator.bin to your TFTP root directory. The default Local IP/Remote IP are 192.168.1.50/192.168.1.100 but you can change it with the --local-ip and --remote-ip arguments.

Once the bistream is loaded, the board you try to retrieve the files on the TFTP server. If not successful or if the boot already timed out when you see the BIOS prompt, you can retry with the netboot command.

The images should load and you should see Linux booting :)

Load the Linux images to SPI-Flash

For boards that have SPI Flash (and enough space on it to store the images), the Linux images can be written to SPI Flash and directly loaded during boot.

To flash the bitstream and linux images to you board, run:

$ ./make.py --board=XXYY --flash

When done, the FPGA of the board should automatically reload itself from the SPI-Flash, start the BIOS, copy the Linux images to RAM and boot :)

Generating the Linux binaries (optional)

$ git clone http://github.com/buildroot/buildroot
$ cd buildroot
$ cp -r ../linux-litex-vexriscv/buildroot/* ./
$ make litex_vexriscv_defconfig
$ make

The binaries are located in output/images/.

Generating the VexRiscv Linux variant (optional)

Install VexRiscv requirements: https://github.com/enjoy-digital/VexRiscv-verilog#requirements

Clone VexRiscv repository and generate the Linux variant:

$ git clone http://github.com/enjoy-digital/Vexriscv-verilog --recursive
$ sbt "runMain vexriscv.GenCoreDefault --externalInterruptArray=true --csrPluginConfig=linux-minimal"

The Linux variant is the VexRiscv.v file.