Self-Driving Car Engineer Nanodegree Program
The Model - Student describes their model in detail. This includes the state, actuators and update equations.
In this project, the task is to implement a global kinematic model which represents the vehicle state model by position x,y
, orientation and velocity v
.
Here, we use MPC (Model Predictive Controller) to drive the car along the track in a more smooth than last PID project. To acheive this, we have to choose the suitable parameter values for optimizing the MPC cost function.
Besides the variables mentioned above, the following two parameters are also used to define the MPC pipeline.
- The Cross Track Error (CTE) which refers to the y distance of the vehicle apart from the referenced trajectory.
- The Orientation Error () which refers to the error between the car's orientation and the trajectory's orientation.
Also, two autuator outputs (actuators) are used:
which refers to the steering angle.
a , which refers to the acceleration value (can be negative or positive)
The update equations for the state vector are listed as follows:
Timestep Length and Elapsed Duration (N & dt) - Student discusses the reasoning behind the chosen N (timestep length) and dt (elapsed duration between timesteps) values. Additionally the student details the previous values tried.
We choose N=10 and dt=0.1 (line 9-10 in MPC.cpp
) for timestep length and elapsed Duration between timesteps, respectively. These values mean that the optimizer is considering a one-second duration (10*0.1s = 1s) to determine a refinable trajectory. We had tried several other values for N and dt: N=13, dt=0.2 / N=8, dt=0.125 / N=6, dt=0.15, but found that the most suitable one is N=10 and dt=0.1.
Polynomial Fitting and MPC Preprocessing - A polynomial is fitted to waypoints. If the student preprocesses waypoints, the vehicle state, and/or actuators prior to the MPC procedure it is described.
To simplify the computation for fitting a polynomial to the waypoints, we transform them into the car's coordinate (lines 106-111 main.cpp
).
Model Predictive Control with Latency - The student implements Model Predictive Control that handles a 100 millisecond latency. Student provides details on how they deal with latency.
To account for the delay of actuations, we modified the equations (line 106-108 in MPC.cpp
) for consider the latency by using previous actuations.
Instead of using the cost functions mentioned in class (punishing CTE, epsi, difference between velocity and a reference velocity, delta, acceleration, change in delta, and change in acceleration), we add an additional cost to penalize the combination of velocity and steering (line 65 in MPC.cpp
) , which results in much stablized corner turning.
- cmake >= 3.5
- All OSes: click here for installation instructions
- make >= 4.1(mac, linux), 3.81(Windows)
- Linux: make is installed by default on most Linux distros
- Mac: install Xcode command line tools to get make
- Windows: Click here for installation instructions
- gcc/g++ >= 5.4
- Linux: gcc / g++ is installed by default on most Linux distros
- Mac: same deal as make - [install Xcode command line tools]((https://developer.apple.com/xcode/features/)
- Windows: recommend using MinGW
- uWebSockets
- Run either
install-mac.sh
orinstall-ubuntu.sh
. - If you install from source, checkout to commit
e94b6e1
, i.e.Some function signatures have changed in v0.14.x. See this PR for more details.git clone https://github.com/uWebSockets/uWebSockets cd uWebSockets git checkout e94b6e1
- Run either
- Fortran Compiler
- Mac:
brew install gcc
(might not be required) - Linux:
sudo apt-get install gfortran
. Additionall you have also have to install gcc and g++,sudo apt-get install gcc g++
. Look in this Dockerfile for more info.
- Mac:
- Ipopt
- If challenges to installation are encountered (install script fails). Please review this thread for tips on installing Ipopt.
- Mac:
brew install ipopt
- Some Mac users have experienced the following error:
This error has been resolved by updrading ipopt withListening to port 4567 Connected!!! mpc(4561,0x7ffff1eed3c0) malloc: *** error for object 0x7f911e007600: incorrect checksum for freed object - object was probably modified after being freed. *** set a breakpoint in malloc_error_break to debug
brew upgrade ipopt --with-openblas
per this forum post. - Linux
- You will need a version of Ipopt 3.12.1 or higher. The version available through
apt-get
is 3.11.x. If you can get that version to work great but if not there's a scriptinstall_ipopt.sh
that will install Ipopt. You just need to download the source from the Ipopt releases page. - Then call
install_ipopt.sh
with the source directory as the first argument, ex:sudo bash install_ipopt.sh Ipopt-3.12.1
.
- You will need a version of Ipopt 3.12.1 or higher. The version available through
- Windows: TODO. If you can use the Linux subsystem and follow the Linux instructions.
- CppAD
- Mac:
brew install cppad
- Linux
sudo apt-get install cppad
or equivalent. - Windows: TODO. If you can use the Linux subsystem and follow the Linux instructions.
- Mac:
- Eigen. This is already part of the repo so you shouldn't have to worry about it.
- Simulator. You can download these from the releases tab.
- Not a dependency but read the DATA.md for a description of the data sent back from the simulator.
- Clone this repo.
- Make a build directory:
mkdir build && cd build
- Compile:
cmake .. && make
- Run it:
./mpc
.
- It's recommended to test the MPC on basic examples to see if your implementation behaves as desired. One possible example is the vehicle starting offset of a straight line (reference). If the MPC implementation is correct, after some number of timesteps (not too many) it should find and track the reference line.
- The
lake_track_waypoints.csv
file has the waypoints of the lake track. You could use this to fit polynomials and points and see of how well your model tracks curve. NOTE: This file might be not completely in sync with the simulator so your solution should NOT depend on it. - For visualization this C++ matplotlib wrapper could be helpful.
We've purposefully kept editor configuration files out of this repo in order to keep it as simple and environment agnostic as possible. However, we recommend using the following settings:
- indent using spaces
- set tab width to 2 spaces (keeps the matrices in source code aligned)
Please (do your best to) stick to Google's C++ style guide.
Note: regardless of the changes you make, your project must be buildable using cmake and make!
More information is only accessible by people who are already enrolled in Term 2 of CarND. If you are enrolled, see the project page for instructions and the project rubric.
- You don't have to follow this directory structure, but if you do, your work will span all of the .cpp files here. Keep an eye out for TODOs.
Help your fellow students!
We decided to create Makefiles with cmake to keep this project as platform agnostic as possible. Similarly, we omitted IDE profiles in order to we ensure that students don't feel pressured to use one IDE or another.
However! I'd love to help people get up and running with their IDEs of choice. If you've created a profile for an IDE that you think other students would appreciate, we'd love to have you add the requisite profile files and instructions to ide_profiles/. For example if you wanted to add a VS Code profile, you'd add:
- /ide_profiles/vscode/.vscode
- /ide_profiles/vscode/README.md
The README should explain what the profile does, how to take advantage of it, and how to install it.
Frankly, I've never been involved in a project with multiple IDE profiles before. I believe the best way to handle this would be to keep them out of the repo root to avoid clutter. My expectation is that most profiles will include instructions to copy files to a new location to get picked up by the IDE, but that's just a guess.
One last note here: regardless of the IDE used, every submitted project must still be compilable with cmake and make./
A well written README file can enhance your project and portfolio. Develop your abilities to create professional README files by completing this free course.