A TypeScript-based Model Context Protocol (MCP) server that provides local-first document management and semantic search using embeddings. The server exposes a collection of MCP tools and is optimized for performance with on-disk persistence, an in-memory index, and caching.
NEW! Enhanced with Google Gemini AI for advanced document analysis and contextual understanding. Ask complex questions and get intelligent summaries, explanations, and insights from your documents. To get API Key go to Google AI Studio
- Intelligent Document Analysis: Gemini AI understands context, relationships, and concepts
- Natural Language Queries: Ask a question, not just keywords
- Smart Summarization: Get comprehensive overviews and explanations
- Contextual Insights: Understand how different parts of your documents relate
- File Mapping Cache: Avoid re-uploading the same files to Gemini for efficiency
- AI-Powered Search 🤖: Advanced document analysis with Gemini AI for contextual understanding and intelligent insights
- Traditional Semantic Search: Chunk-based search using embeddings plus in-memory keyword index
- Context Window Retrieval: Gather surrounding chunks for richer LLM answers
- O(1) Document lookup and keyword index through
DocumentIndex
for instant retrieval - LRU
EmbeddingCache
to avoid recomputing embeddings and speed up repeated queries - Parallel chunking and batch processing to accelerate ingestion of large documents
- Streaming file reader to process large files without high memory usage
- Intelligent file handling: copy-based storage with automatic backup preservation
- Complete deletion: removes both JSON files and associated original files
- Local-only storage: no external database required. All data resides in
~/.mcp-documentation-server/
Example configuration for an MCP client (e.g., Claude Desktop):
{
"mcpServers": {
"documentation": {
"command": "npx",
"args": [
"-y",
"@andrea9293/mcp-documentation-server"
],
"env": {
"GEMINI_API_KEY": "your-api-key-here", // Optional, enables AI-powered search
"MCP_EMBEDDING_MODEL": "Xenova/all-MiniLM-L6-v2",
}
}
}
}
- Add documents using the
add_document
tool or by placing.txt
,.md
, or.pdf
files into the uploads folder and callingprocess_uploads
. - Search documents with
search_documents
to get ranked chunk hits. - Use
get_context_window
to fetch neighboring chunks and provide LLMs with richer context.
The server exposes several tools (validated with Zod schemas) for document lifecycle and search:
add_document
— Add a document (title, content, metadata)list_documents
— List stored documents and metadataget_document
— Retrieve a full document by iddelete_document
— Remove a document, its chunks, and associated original files
process_uploads
— Convert files in uploads folder into documents (chunking + embeddings + backup preservation)get_uploads_path
— Returns the absolute uploads folder pathlist_uploads_files
— Lists files in uploads folder
search_documents_with_ai
— 🤖 AI-powered search using Gemini for advanced document analysis (requiresGEMINI_API_KEY
)search_documents
— Semantic search within a document (returns chunk hits and LLM hint)get_context_window
— Return a window of chunks around a target chunk index
Configure behavior via environment variables. Important options:
MCP_EMBEDDING_MODEL
— embedding model name (default:Xenova/all-MiniLM-L6-v2
). Changing the model requires re-adding documents.GEMINI_API_KEY
— Google Gemini API key for AI-powered search features (optional, enablessearch_documents_with_ai
).MCP_INDEXING_ENABLED
— enable/disable theDocumentIndex
(true/false). Default:true
.MCP_CACHE_SIZE
— LRU embedding cache size (integer). Default:1000
.MCP_PARALLEL_ENABLED
— enable parallel chunking (true/false). Default:true
.MCP_MAX_WORKERS
— number of parallel workers for chunking/indexing. Default:4
.MCP_STREAMING_ENABLED
— enable streaming reads for large files. Default:true
.MCP_STREAM_CHUNK_SIZE
— streaming buffer size in bytes. Default:65536
(64KB).MCP_STREAM_FILE_SIZE_LIMIT
— threshold (bytes) to switch to streaming path. Default:10485760
(10MB).
Example .env
(defaults applied when variables are not set):
MCP_INDEXING_ENABLED=true # Enable O(1) indexing (default: true)
GEMINI_API_KEY=your-api-key-here # Google Gemini API key (optional)
MCP_CACHE_SIZE=1000 # LRU cache size (default: 1000)
MCP_PARALLEL_ENABLED=true # Enable parallel processing (default: true)
MCP_MAX_WORKERS=4 # Parallel worker count (default: 4)
MCP_STREAMING_ENABLED=true # Enable streaming (default: true)
MCP_STREAM_CHUNK_SIZE=65536 # Stream chunk size (default: 64KB)
MCP_STREAM_FILE_SIZE_LIMIT=10485760 # Streaming threshold (default: 10MB)
Default storage layout (data directory):
~/.mcp-documentation-server/
├── data/ # Document JSON files
└── uploads/ # Drop files (.txt, .md, .pdf) to import
Add a document via MCP tool:
{
"tool": "add_document",
"arguments": {
"title": "Python Basics",
"content": "Python is a high-level programming language...",
"metadata": {
"category": "programming",
"tags": ["python", "tutorial"]
}
}
}
Search a document:
{
"tool": "search_documents",
"arguments": {
"document_id": "doc-123",
"query": "variable assignment",
"limit": 5
}
}
Advanced Analysis (requires GEMINI_API_KEY
):
{
"tool": "search_documents_with_ai",
"arguments": {
"document_id": "doc-123",
"query": "explain the main concepts and their relationships"
}
}
Complex Questions:
{
"tool": "search_documents_with_ai",
"arguments": {
"document_id": "doc-123",
"query": "what are the key architectural patterns and how do they work together?"
}
}
Summarization Requests:
{
"tool": "search_documents_with_ai",
"arguments": {
"document_id": "doc-123",
"query": "summarize the core principles and provide examples"
}
}
Fetch context window:
{
"tool": "get_context_window",
"arguments": {
"document_id": "doc-123",
"chunk_index": 5,
"before": 2,
"after": 2
}
}
- Complex Questions: "How do these concepts relate to each other?"
- Summarization: "Give me an overview of the main principles"
- Analysis: "What are the key patterns and their trade-offs?"
- Explanation: "Explain this topic as if I were new to it"
- Comparison: "Compare these different approaches"
-
Smart Caching: File mapping prevents re-uploading the same content
-
Efficient Processing: Only relevant sections are analyzed by Gemini
-
Contextual Results: More accurate and comprehensive answers
-
Natural Interaction: Ask questions in plain English
-
Embedding models are downloaded on first use; some models require several hundred MB of downloads.
-
The
DocumentIndex
persists an index file and can be rebuilt if necessary. -
The
EmbeddingCache
can be warmed by callingprocess_uploads
, issuing curated queries, or using a preload API when available.
Set via MCP_EMBEDDING_MODEL
environment variable:
Xenova/all-MiniLM-L6-v2
(default) - Fast, good quality (384 dimensions)Xenova/paraphrase-multilingual-mpnet-base-v2
(recommended) - Best quality, multilingual (768 dimensions)
The system automatically manages the correct embedding dimension for each model. Embedding providers expose their dimension via getDimensions()
.
git clone https://github.com/andrea9293/mcp-documentation-server.git
cd mcp-documentation-server
npm run dev
npm run build
npm run inspect
- Fork the repository
- Create a feature branch:
git checkout -b feature/name
- Follow Conventional Commits for messages
- Open a pull request
MIT - see LICENSE file
Built with FastMCP and TypeScript 🚀