Code and dataset for EMNLP 2022 paper titled "IDK-MRC: Unanswerable Questions for Indonesian Machine Reading Comprehension".
Train IndoBERT to IDK-MRC
Train XLM-R to IDK-MRC
My own dataset analysis
I(n)dontKnow-MRC (IDK-MRC) is an Indonesian Machine Reading Comprehension dataset that covers answerable and unanswerable questions. Based on the combination of the existing answerable questions in TyDiQA, the new unanswerable question in IDK-MRC is generated using a question generation model and human-written question. Each paragraph in the dataset has a set of answerable and unanswerable questions with the corresponding answer.
Besides IDK-MRC dataset, several baseline datasets also provided:
- Trans SQuAD : machine translated SQuAD 2.0 (Muis and Purwarianti, 2020)
- TyDiQA: Indonesian answerable questions set from the TyDiQA-GoldP (Clark et al., 2020)
- Model Gen: TyDiQA + the unanswerable questions output from the question generation model
- Human Filt: Model Gen dataset that has been filtered by human annotator
You can find all datasets on the dataset
directory. You can also load it using NusaCrowd or HuggingFace.
We encourage you to create a virtual environment using conda by running this script:
conda create --n "<your_env_name>" python=3.8.13
conda activate <your_env_name>
Install all dependencies:
pip install -r requirements.txt
Then, run this python script to download stanza resources:
import stanza
stanza.download('id')
3 MRC models finetuned on IDK-MRC dataset can be downloaded from HuggingFace:
- IndoBERT (base, uncased): rifkiaputri/indobert-base-id-finetune-idk-mrc
- m-BERT (base, cased): rifkiaputri/mbert-base-id-finetune-idk-mrc
- XLM-R (base, cased): rifkiaputri/xlmr-base-id-finetune-idk-mrc
Also, 1 Unanswerable Question Generation (Unanswerable QG) model trained on translated SQuAD dataset can be downloaded from HuggingFace:
- mT5 (base, cased): rifkiaputri/mt5-base-id-finetune-unans-qg
Run this following script to train MRC model:
python qa/run_qa.py \
--train_path dataset/idk_mrc/train.json \
--val_path dataset/idk_mrc/valid.json \
--test_path dataset/idk_mrc/test.json \
--epoch 10 \
--model_name bert \
--pretrain_name indobenchmark/indobert-base-p2 \
--n_gpu 1 \
--wb_name idk-mrc --wb_name_test idk-mrc-test \
--out_path outputs \
--out_name indobert_squad \
--lang id \
--uncased \
--seed 42
Run this following script to train Unanswerable QG model:
python run_mt5.py \
--train_path dataset/qg/train_id_aligned.json \
--val_path dataset/qg/dev_id_aligned.json \
--val_path_for_writing dataset/qg/dev_id_aligned_writing.json \
--pretrain_name google/mt5-base \
--qa_model outputs/qa/qgen-squad-id-trans/ \
--n_gpu 1 \
--wb_train_name mt5_squad_train \
--wb_eval_name mt5_squad_ubleu_eval \
--wb_eval_run_name mt5_base_id \
--out_dir outputs/ \
--cache_dir cache_dir/ \
--seed 42 \
--num_train_epochs 5 \
--train_batch_size 8 \
--max_seq_length 512 \
--top_k 50 \
--top_p 0.95 \
--num_return_seq 10 \
--do_sample
Please cite this paper if you use any code or dataset in this repository:
@misc{putri2022idk,
doi = {10.48550/ARXIV.2210.13778},
url = {https://arxiv.org/abs/2210.13778},
author = {Putri, Rifki Afina and Oh, Alice},
title = {IDK-MRC: Unanswerable Questions for Indonesian Machine Reading Comprehension},
publisher = {arXiv},
year = {2022},
}