This is the repository for the AAAI 2023 paper A Model-agnostic Heuristics for Selective Classification.
All the code was run on a machine with Ubuntu 20.04.4 and using programming language Python 3.8.12.
Data can be found here. Download this repository from github and then place downladed data in 'code/data'. We suggest to create a new environment using:
$ conda create -n ENVNAME --file environment.yml
Activate environment and go to the code folder by using:
$ conda activate ENVNAME
$ cd code
To run experiments on tabular data for Table 1
-
For PlugIn and SCross
$ python exp_realdata.py --model lgbm --boot_iter 1000 --cv 5
-
For SAT
$ python exp_realdata.py --model resnet --metas sat --boot_iter 1000 --max_epochs 300
-
For SELNET
$ python exp_realdata_selnet.py --model resnet --boot_iter 1000 --max_epochs 300
To run experiments for CatsVsDogs for Table 1 (check the paths):
- for SCROSS:
$ python exp_catsdogs_scross.py
- for PLUGIN
$ python exp_catsdogs_plugin.py
- for SAT and SELNET:
$ python exp_catsdogs_selnet.py
To run experiments on tabular data for Table 2:
$ python exp_realdata.py --model lgbm --boot_iter 1000 --cv DESIRED_K
To run experiments on CatsVsDogs for Table 2:
$ python exp_catsdogs_scross.py --boot_iter 1000 --cv DESIRED_K
To run experiments for Table 3, possible DESIRED_BASE_CLASSIFIER: xgboost, rf, resnet, logistic.
$ python exp_realdata.py --model DESIRED_BASE_CLASSIFIER --boot_iter 1000 --cv 5