/vietTTS

Vietnamese Text to Speech library

Primary LanguagePythonMIT LicenseMIT

A Vietnamese TTS

Tacotron + HiFiGAN vocoder for vietnamese datasets.

Online demo at https://huggingface.co/spaces/ntt123/vietTTS.

A synthesized audio clip: clip.wav. A colab notebook: notebook.

🔔Checkout the experimental multi-speaker branch (git checkout multi-speaker) for multi-speaker support.🔔

Install

git clone https://github.com/NTT123/vietTTS.git
cd vietTTS 
pip3 install -e .

Quick start using pretrained models

bash ./scripts/quick_start.sh

Download InfoRe dataset

bash ./scripts/download_aligned_infore_dataset.sh

Note: this is a denoised and aligned version of the original dataset which is donated by the InfoRe Technology company (see here). You can download the original dataset (InfoRe Technology 1) at here.

The Montreal Forced Aligner (MFA) is used to align transcript and speech (textgrid files). Here is a Colab notebook to align InfoRe dataset. Visit MFA for more information on how to create textgrid files.

Train duration model

python -m vietTTS.nat.duration_trainer

Train acoustic model

python -m vietTTS.nat.acoustic_trainer

Train HiFiGAN vocoder

We use the original implementation from HiFiGAN authors at https://github.com/jik876/hifi-gan. Use the config file at assets/hifigan/config.json to train your model.

git clone https://github.com/jik876/hifi-gan.git

# create dataset in hifi-gan format
ln -sf `pwd`/train_data hifi-gan/data
cd hifi-gan/data
ls -1 *.TextGrid | sed -e 's/\.TextGrid$//' > files.txt
cd ..
head -n 100 data/files.txt > val_files.txt
tail -n +101 data/files.txt > train_files.txt
rm data/files.txt

# training
python train.py \
  --config ../assets/hifigan/config.json \
  --input_wavs_dir=data \
  --input_training_file=train_files.txt \
  --input_validation_file=val_files.txt

Finetune on Ground-Truth Aligned melspectrograms:

cd /path/to/vietTTS # go to vietTTS directory
python -m vietTTS.nat.zero_silence_segments -o train_data # zero all [sil, sp, spn] segments
python -m vietTTS.nat.gta -o /path/to/hifi-gan/ft_dataset  # create gta melspectrograms at hifi-gan/ft_dataset directory

# turn on finetune
cd /path/to/hifi-gan
python train.py \
  --fine_tuning True \
  --config ../assets/hifigan/config.json \
  --input_wavs_dir=data \
  --input_training_file=train_files.txt \
  --input_validation_file=val_files.txt

Then, use the following command to convert pytorch model to haiku format:

cd ..
python -m vietTTS.hifigan.convert_torch_model_to_haiku \
  --config-file=assets/hifigan/config.json \
  --checkpoint-file=hifi-gan/cp_hifigan/g_[latest_checkpoint]

Synthesize speech

python -m vietTTS.synthesizer \
  --lexicon-file=train_data/lexicon.txt \
  --text="hôm qua em tới trường" \
  --output=clip.wav