What if you had to read an article before you commented on it? Generating efficient reading recall tests and basic understanding (topics, authorship, etc).
> python 3.8
(might work with lower pythons, ymmv)- pipenv
-
clone the repo
-
install pythond deps
pipenv install
- download nltk data, edit
NLTK_DATA
var in .env to configure path
pipenv run init_corpora
pipenv run test
This ships with a cli module, easily accessible via pipenv:
➜ pipenv run cli -h
Loading .env environment variables…
usage: cli.py [-h] [-l] [-m {important_words} [{important_words} ...]] [-c COUNT] [-d] file
positional arguments:
file the file to analyze
optional arguments:
-h, --help show this help message and exit
-l, --local look for the file in comprende/tests/data
-m {important_words} [{important_words} ...], --modules {important_words} [{important_words} ...]
specify which question modules to run for this file
-c COUNT, --count COUNT
specify how many questions to generate
-d, --debug enable additional debug output
example usage:
➜ pipenv run cli proprietary/nyt/one_district -dl -c2 | jq
Loading .env environment variables…
[
{
"prompt": "Which of these key phrases was mentioned in this document?",
"correct_options": [
"high-needs students"
],
"module_name": "important_words",
"additional_option": [],
"subtype": "least",
"debug": {
"freq": 1
}
},
{
"prompt": "Which of these key phrases was mentioned often in this document?",
"correct_options": [
"mr. miyashiro"
],
"module_name": "important_words",
"additional_option": [],
"subtype": "most",
"debug": {
"freq": 10
}
}
]