/llama-2-jax

JAX implementation of the Llama 2 model

Primary LanguagePython

JAX Implementation of Llama 2

This project is the JAX implementation of Llama 2.

Similar Projects

Acknowledgements

This project is supported by Cloud TPUs from Google's TPU Research Cloud (TRC).

Motivation

The objectives of this project are threefold:

  • Implement the Llama 2 model using JAX to enable efficient training and inference on Google Cloud TPU;
  • Develop a high-quality codebase that serves as an exemplary implementation of the Transformer model using JAX;
  • Facilitate the identification of common errors and inconsistencies across various transformer models through the implementation of a high-quality codebase, thereby providing valuable insights for the NLP community.

Features

Environment Setup

This project requires at least Python 3.11, JAX 0.4.14, PyTorch 2.1.0 and Transformers 4.32.0.dev0.

PyTorch and Transformers are needed for testing purposes. Additionally, the data loader depends on PyTorch DataLoader, while the profiling functionality requires TensorFlow.

Install Python 3.11

For Ubuntu users, you can follow How to install Python 3.11 on Ubuntu 22.04 to Install Python 3.11. The tutorial applied to Ubuntu 20.04 as well.

Create venv

python3.11 -m venv venv
. venv/bin/activate
pip install -U pip
pip install -U wheel

Install the proper version of JAX

You need to follow the installation instructions on JAX's offical GitHub page.

TPU:

pip install "jax[tpu]" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html

CUDA 12:

pip install "jax[cuda12_pip]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

CUDA 11.8:

pip install "jax[cuda11_pip]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

Install the proper version of PyTorch

Typically, you only need to install the CPU version of PyTorch since we perform most of the computation using JAX. However, it's worth noting that the current codebase's generation process is not fully optimised yet. To expedite the inference, one effective approach would involve converting the model back to Hugging Face format and running the inference in PyTorch.

To install PyTorch, you can follow the official installation guide.

CPU:

pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cpu

CUDA 12:

pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu121

CUDA 11.8:

pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu118

Install other dependencies

pip install git+https://github.com/huggingface/transformers.git
pip install -r requirements.txt

Download LLaMA weights

LLaMA 1:

If you couldn't obtain the LLaMA weights, you can download them with shawwn/llama-dl.

mkdir ../llama-weights-original && cd ../llama-weights-original
curl -o- https://raw.githubusercontent.com/shawwn/llama-dl/56f50b96072f42fb2520b1ad5a1d6ef30351f23c/llama.sh | bash
python ../llama-2-jax/venv/lib/python3.11/site-packages/transformers/models/llama/convert_llama_weights_to_hf.py --input_dir ../llama-weights-original --model_size 7B --output_dir ../llama-weights/7B

Llama 2:

You can request to access the Llama weights from the official website. After your request is approved, you will automatically get access to the Hugging Face Llama 2 models. You can verify that the models are accessible by trying to access the Llama 2 7B version.

Convert parameters

If you need to convert Llama 2 models, you need to first log in using huggingface-cli login.

python scripts/convert_params_runner.py llama1-7B
python scripts/convert_params_runner.py llama2-7B
python scripts/convert_params_runner.py llama2-70B

Special configuration for TPU Pods

If you are running on TPU pods or other multi-host environments, you need to put the IP address of other machines in external-ips.txt (one IP address per line). Besides, you should make sure that one of the hosts can SSH into other hosts.

Generation

python generate.py

On TPU pods, the command is:

./startpod python generate.py

Training

I present a simple example of the training pipeline by fine-tuning the model on the GSM dataset.

Download GSM dataset

cd .. && git clone --depth=1 https://github.com/openai/grade-school-math.git

Run the training script

python train.py

On TPU pods, the command is:

./startpod python train.py

Model Configurations

Name Parameters vocab_size n_layers n_heads_kv n_rep_kv d_model d_ff
LLaMA 1 7B 6738415616 32000 32 32 1 4096 11008
LLaMA 1 13B 32000 40 40 1 5120
LLaMA 1 33B 32000 60 52 1 6656
LLaMA 1 65B 32000 80 64 1 8192
Llama 2 7B 6738415616 32000 32 32 1 4096 11008
Llama 2 13B 32000
Llama 2 70B 32000 80 8 8 8192 28672
  n_parameters
= 2 * vocab_size * d_model
+ (2 * n_layers + 1) * d_model
+ 2 * n_layers * d_model * n_rep_kv * n_heads_kv * d_k
+ 2 * n_layers * d_model * n_heads_kv * d_k
+ 3 * n_layers * d_model * d_ff

Model Architecture

LLaMA 1 (7B)

Hugging Face format:

LlamaForCausalLM(
  (model): LlamaModel(
    (embed_tokens): Embedding(32000, 4096, padding_idx=0)
    (layers): ModuleList(
      (0-31): 32 x LlamaDecoderLayer(
        (self_attn): LlamaAttention(
          (q_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (k_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (v_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (o_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (rotary_emb): LlamaRotaryEmbedding()
        )
        (mlp): LlamaMLP(
          (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
          (down_proj): Linear(in_features=11008, out_features=4096, bias=False)
          (up_proj): Linear(in_features=4096, out_features=11008, bias=False)
          (act_fn): SiLUActivation()
        )
        (input_layernorm): LlamaRMSNorm()
        (post_attention_layernorm): LlamaRMSNorm()
      )
    )
    (norm): LlamaRMSNorm()
  )
  (lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)

The format used in this project:

model
  embedding: (32000, 4096)
  decoder: decoder_block
    input_norm: (32, 4096)
    attention
      q_proj: (32, 4096, 1, 32, 128)
      k_proj: (32, 4096, 32, 128)
      v_proj: (32, 4096, 32, 128)
      out_proj: (32, 1, 32, 128, 4096)
    post_attn_norm: (32, 4096)
    gate_proj: (32, 4096, 11008)
    up_proj: (32, 4096, 11008)
    down_proj: (32, 11008, 4096)
  norm: (4096)
lm_head: (4096, 32000)

Llama 2 (70B)

Hugging Face format:

LlamaForCausalLM(
  (model): LlamaModel(
    (embed_tokens): Embedding(32000, 8192, padding_idx=0)
    (layers): ModuleList(
      (0-79): 80 x LlamaDecoderLayer(
        (self_attn): LlamaAttention(
          (q_proj): Linear(in_features=8192, out_features=8192, bias=False)
          (k_proj): Linear(in_features=8192, out_features=1024, bias=False)
          (v_proj): Linear(in_features=8192, out_features=1024, bias=False)
          (o_proj): Linear(in_features=8192, out_features=8192, bias=False)
          (rotary_emb): LlamaRotaryEmbedding()
        )
        (mlp): LlamaMLP(
          (gate_proj): Linear(in_features=8192, out_features=28672, bias=False)
          (up_proj): Linear(in_features=8192, out_features=28672, bias=False)
          (down_proj): Linear(in_features=28672, out_features=8192, bias=False)
          (act_fn): SiLUActivation()
        )
        (input_layernorm): LlamaRMSNorm()
        (post_attention_layernorm): LlamaRMSNorm()
      )
    )
    (norm): LlamaRMSNorm()
  )
  (lm_head): Linear(in_features=8192, out_features=32000, bias=False)
)

The format used in this project:

model
  embedding: (32000, 8192)
  decoder: decoder_block
    input_norm: (80, 8192)
    attention
      q_proj: (80, 8192, 8, 8, 128)
      k_proj: (80, 8192, 8, 128)
      v_proj: (80, 8192, 8, 128)
      out_proj: (80, 8, 8, 128, 8192)
    post_attn_norm: (80, 8192)
    gate_proj: (80, 8192, 28672)
    up_proj: (80, 8192, 28672)
    down_proj: (80, 28672, 8192)
  norm: (8192)
lm_head: (8192, 32000)

Findings

  • LLaMA utilises rotary positional embeddings.
  • There is no bias in the Q, K, V matrices and the linear projections in the FFNs, which is the same as the original transformer, but different from BERT and BART.
  • In Llama models, each FFN has 3 linear projections, while in BART there are only 2.
  • There is no dropout in the original LLaMA implementation.
  • Llama 2 70B utilises Grouped-Query Attention (GQA).