/KubeflowSummit2021

Kubeflow Training and AutoML 2021

Primary LanguageJupyter NotebookMIT LicenseMIT

Kubeflow AutoML and Training Summit 2021

Linkedin Badge

⚡ Technologies

Python Docker Google Cloud GitHub Kubernetes Kubeflow

Setup

  1. Your ~/.kube/config should point to a cluster with KFServing installed.
  2. Your cluster's Istio Ingress gateway must be network accessible.
  3. Install Minio with following Minio deploy step.
  4. Use existing Kafka cluster or install Kafka on your cluster with Confluent helm chart.
  5. Install Kafka Event Source.
  6. Kubernetes 1.18+
  7. KFServing 0.5+

Building Real time Image classification with Kubeflow Orchestrator

Deploy Kafka

If you do not have an existing kafka cluster, you can run the following commands to install in-cluster kafka using helm3 with persistence turned off.

helm repo add confluentinc https://confluentinc.github.io/cp-helm-charts/
helm repo update
helm install my-kafka -f values.yaml --set cp-schema-registry.enabled=false,cp-kafka-rest.enabled=false,cp-kafka-connect.enabled=false confluentinc/cp-helm-charts

after successful install you are expected to see the running kafka cluster

NAME                      READY   STATUS    RESTARTS   AGE
my-kafka-cp-kafka-0       2/2     Running   0          126m
my-kafka-cp-kafka-1       2/2     Running   1          126m
my-kafka-cp-kafka-2       2/2     Running   0          126m
my-kafka-cp-zookeeper-0   2/2     Running   0          127m

Install Knative Eventing and Kafka Event Source

VERSION=v0.23.0
kubectl apply --selector knative.dev/crd-install=true --filename https://github.com/knative/eventing/releases/download/$VERSION/eventing-crds.yaml
kubectl apply -f https://github.com/knative/eventing/releases/download/$VERSION/eventing-core.yaml
kubectl apply --filename https://github.com/knative/eventing/releases/download/$VERSION/eventing.yaml
kubectl apply -f https://storage.googleapis.com/knative-releases/eventing-contrib/latest/kafka-source.yaml
kubectl apply -f addressable-resolver.yaml

KAFKA

kubectl apply -f kafka-client.yaml
kubectl exec -it kafka-client -- /bin/bash
kafka-topics --zookeeper my-kafka-cp-zookeeper-headless:2181  --list
kafka-topics --zookeeper my-kafka-cp-zookeeper-headless:2181 --topic realtime --create --partitions 1 --replication-factor 1 --if-not-exists
kafka-console-consumer --bootstrap-server my-kafka-cp-kafka-headless:9092 --topic realtime --from-beginning --timeout-ms 4000 --max-messages 5 

Deploy Minio

  • If you do not have Minio setup in your cluster, you can run following command to install Minio test instance.
cd pipeline/MINIO
kubectl apply -f minio.yaml
  • Install Minio client mc

MINIO

kubectl port-forward svc/minio-service -n default 9000:9000

mc config host add myminio http://127.0.0.1:9000 minio minio123

mc mb myminio/rawimage
mc mb myminio/imageprediction

- Setup event notification to publish events to kafka.
mc admin config set myminio notify_kafka:1 tls_skip_verify="off"  queue_dir="" queue_limit="0" sasl="off" sasl_password="" sasl_username="" tls_client_auth="0" tls="off" client_tls_cert="" client_tls_key="" brokers="my-kafka-cp-kafka-headless:9092" topic="realtime" version=""

# Restart minio
mc admin service restart myminio

# Setup event notification when putting images to the bucket
mc event add myminio/rawimage arn:minio:sqs:us-east-1:1:kafka -p --event put --suffix .jpg

Create the InferenceService

Specify the built image on Transformer spec and apply the inference service CRD.

cd pipeline/SERVING
kubectl apply -f minio_serving.yaml 

Create kafka event source

Apply kafka event source which creates the kafka consumer pod to pull the events from kafka and deliver to inference service.

kubectl apply -f kafka-source.yaml

This creates the kafka source pod which consumers the events from realtime topic

kafkasource-kafka-source-3d809fe2-1267-11ea-99d0-42010af00zbn5h   1/1     Running   0          8h

Upload a flower image to Minio RawImage bucket

The last step is to upload the image images/flower.jpg, image then should be moved to the classified bucket based on the prediction response!

mc cp images/flower.jpg myminio/rawimage

Launch grafana dashboard

Knative Monitoring

#create namespace
kubectl create namespace knative-monitoring
#setup monitoring components
kubectl apply  --filename https://github.com/knative/serving/releases/download/v0.13.0/monitoring-metrics-prometheus.yaml
# use port-forcd warding
kubectl port-forward --namespace knative-monitoring $(kubectl get pod --namespace knative-monitoring --selector="app=grafana" --output jsonpath='{.items[0].metadata.name}') 8080:3000