pyfn
Welcome to pyfn
, a Python module to process FrameNet annotation.
pyfn
can be used to:
- convert data to and from FRAMENET XML, SEMEVAL XML, SEMAFOR CoNLL, BIOS and CoNLL-X
- preprocess FrameNet data using a standardized state-of-the-art pipeline
- run the SEMAFOR and OPEN-SESAME frame semantic parsers
- build your own frame semantic parser using a standard set of python models to marshall/unmarshall FrameNet XML data
This repository also accompanies the (Kabbach et al., 2018) paper:
@InProceedings{C18-1267,
author = "Kabbach, Alexandre
and Ribeyre, Corentin
and Herbelot, Aur{\'e}lie",
title = "Butterfly Effects in Frame Semantic Parsing: impact of data processing on model ranking",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
year = "2018",
publisher = "Association for Computational Linguistics",
pages = "3158--3169",
location = "Santa Fe, New Mexico, USA",
url = "http://aclweb.org/anthology/C18-1267"
}
Dependencies
On Unix, you may need to install the following packages:
libxml2 libxml2-dev libxslt1-dev python-3.x-dev
Install
pip3 install pyfn
Use
When using pyfn
, your FrameNet splits directory structure should follow:
.
|-- fndata-1.x-with-dev
| |-- train
| | |-- fulltext
| | |-- lu
| |-- dev
| | |-- fulltext
| | |-- lu
| |-- test
| | |-- fulltext
| | |-- lu
| |-- frame
| |-- frRelation.xml
| |-- semTypes.xml
Conversion
pyfn
can be used to convert data to and from:
- FRAMENET XML: the format of the released FrameNet XML data
- SEMEVAL XML: the format of the SEMEVAL 2007 shared task 19 on frame semantic structure extraction
- SEMAFOR CoNLL: the format used by the SEMAFOR parser
- BIOS: the format used by the OPEN-SESAME parser
- CoNLL-X: the format used by various state-of-the-art POS taggers and dependency parsers (see preprocessing considerations for frame semantic parsing below)
As well as to generate the .csv
hierarchy files used by both SEMAFOR and
OPEN-SESAME parsers to integrate the hierarchy feature (see (Kshirsagar et al., 2015) for details).
For an exhaustive description of all formats, check out FORMAT.md.
HowTo
The following sections provide examples of commands to convert FN data to and from different formats. All commands can make use of the following options:
--splits
: specify which splits should be converted.--splits train
will generate all train/dev/test splits, according to data found under the fndata-1.x/{train/dev/test} directories.--splits dev
will generate the dev and test splits according to data found under the fndata-1.x/{dev/test} directories. This option will skip the train splits but generate the same dev/test splits that would have been generated with--splits train
.--splits test
will generate the test splits according to data found under the fndata-1.x/test directory, and skip the train/dev splits. The test splits generated with--splits test
will be the same as those generated with the--splits train
and--splits dev
. Default to--splits test
.--output_sentences
: if specified, will output a.sentences
file in the process, containing all raw annotated sentences, one sentence per line.--with_exemplars
: if specified, will process the exemplars (data under thelu
directory) in addition to fulltext.--filter
: specify data filtering options (see details below).
For details on pyfn
usage, do:
pyfn --help
pyfn generate --help
pyfn convert --help
From FN XML to BIOS
To convert data from FrameNet XML format to BIOS format, do:
pyfn convert \
--from fnxml \
--to bios \
--source /abs/path/to/fndata-1.x \
--target /abs/path/to/xp/data/output/dir \
--splits train \
--output_sentences \
--filter overlap_fes
Using --filter overlap_fes
will skip all annotationsets with overlapping
frame elements, as those cases are not supported by the BIOS format.
From FN XML to SEMAFOR CoNLL
To generate the train.frame.elements
file used to train SEMAFOR, and the
{dev,test}.frames
file used for decoding, do:
pyfn convert \
--from fnxml \
--to semafor \
--source /abs/path/to/fndata-1.x \
--target /abs/path/to/xp/data/output/dir \
--splits train \
--output_sentences
From FN XML to SEMEVAL XML
To generate the {dev,test}.gold.xml
gold files in SEMEVAL format for scoring, do:
pyfn convert \
--from fnxml \
--to semeval \
--source /abs/path/to/fndata-1.x \
--target /abs/path/to/xp/data/output/dir \
--splits {dev,test}
From BIOS to SEMEVAL XML
To convert the decoded BIOS files {dev,test}.bios.semeval.decoded
of
OPEN-SESAME to SEMEVAL XML format for scoring, do:
pyfn convert \
--from bios \
--to semeval \
--source /abs/path/to/{dev,test}.bios.semeval.decoded \
--target /abs/path/to/output/{dev,test}.predicted.xml \
--sent /abs/path/to/{dev,test}.sentences
From SEMAFOR CoNLL to SEMEVAL XML
To convert the decoded {dev,test}.frame.elements
files of SEMAFOR to
SEMEVAL XML format for scoring, do:
pyfn convert \
--from semafor \
--to semeval \
--source /abs/path/to/{dev,test}.frame.elements \
--target /abs/path/to/output/{dev,test}.predicted.xml \
--sent /abs/path/to/{dev,test}.sentences
.csv
files
Generate the hierarchy pyfn generate \
--source /abs/path/to/fndata-1.x \
--target /abs/path/to/xp/data/output/dir
To also process exemplars, add the --with_exemplars
option
Preprocessing and Frame Semantic Parsing
pyfn
ships in with a set of bash scripts to preprocess FrameNet data with
various POS taggers and dependency parsers, as well as to perform frame
semantic parsing with a variety of open-source parsers.
Currently supported POS taggers include:
- MXPOST (Ratnaparkhi, 1996)
- NLP4J (Choi, 2016)
Currently supported dependency parsers include:
- MST (McDonald et al., 2006)
- BIST BARCH (Kiperwasser and Goldberg, 2016)
- BIST BMST (Kiperwasser and Goldberg, 2016)
Currently supported frame semantic parsers include:
- SIMPLEFRAMEID (Hartmann et al., 2017) for frame identification
- SEMAFOR (Kshirsagar et al., 2015) for argument identification
- OPEN-SESAME (Swayamdipta et al., 2017) for argument identification
To request support for a POS tagger, a dependency parser or a frame semantic parser, please create an issue on Github/Gitlab.
Download
To run the preprocessing and frame semantic parsing scripts, first download:
data.7z
containing all the FrameNet splits for FN 1.5 and FN 1.7
wget http://129.194.21.122/~kabbach/pyfn/data.7z
lib.7z
containing all the different external softwares (taggers, parsers, etc.)
wget http://129.194.21.122/~kabbach/pyfn/lib.7z
resources.7z
containing all the required resources
wget http://129.194.21.122/~kabbach/pyfn/resources.7z
scripts.7z
containing the set of bash scripts to call the different parsers and preprocessing toolkits
wget http://129.194.21.122/~kabbach/pyfn/scripts.7z
Extract the content of all the archives under a
directory named pyfn
. Your pyfn folder structure should look like:
.
|-- pyfn
| |-- data
| | |-- fndata-1.5-with-dev
| | |-- fndata-1.7-with-dev
| |-- lib
| | |-- bistparser
| | |-- jmx
| | |-- mstparser
| | |-- nlp4j
| | |-- open-sesame
| | |-- semafor
| | |-- semeval
| |-- resources
| | |-- bestarchybrid.model
| | |-- bestarchybrid.params
| | |-- bestfirstorder.model
| | |-- bestfirstorder.params
| | |-- config-decode-pos.xml
| | |-- nlp4j.plemma.model.all.xz
| | |-- sskip.100.vectors
| | |-- wsj.model
| |-- scripts
| | |-- CoNLLizer.py
| | |-- deparse.sh
| | |-- flatten.sh
| | |-- ...
Please strictly follow this directory structure to avoid unexpected errors. pyfn
relies on a lot of relative path resolutions to make scripts calls shorter, and changing this directory structure can break everything
Setup NLP4J for POS tagging
To use NLP4J for POS tagging, modify the resources/config-decode-pos.xml
file by replacing the models.pos absolute path to
your resources/nlp4j.plemma.model.all.xz
:
<configuration>
...
<models>
<pos>/absolute/path/to/pyfn/resources/nlp4j.plemma.model.all.xz</pos>
</models>
</configuration>
Setup DyNET for BIST or OPEN-SESAME
If you intend to use the BIST parser for dependency parsing or OPEN-SESAME for frame semantic parsing, you will need to install DyNET 2.0.2 following:
https://dynet.readthedocs.io/en/2.0.2/python.html
Setup SEMAFOR
To use the SEMAFOR frame semantic parser, modify the scripts/setup.sh
file:
# SEMAFOR options to be changed according to your env
export JAVA_HOME_BIN="/abs/path/to/java/jdk/bin"
export num_threads=2 # number of threads to use
export min_ram=4g # min RAM allocated to the JVM in GB. Corresponds to the -Xms argument
export max_ram=8g # max RAM allocated to the JVM in GB. Corresponds to the -Xmx argument
# SEMAFOR hyperparameters
export kbest=1 # keep k-best parse
export lambda=0.000001 # hyperparameter for argument identification. Refer to Kshirsagar et al. (2015) for details.
export batch_size=4000 # number of batches processed at once for argument identification.
export save_every_k_batches=400 # for argument identification
export num_models_to_save=60 # for argument identification
Using the SEMEVAL PERL evaluation scripts
If you intend to use the SEMEVAL perl evaluation scripts, make sure
to have the App::cpanminus
and XML::Parser
modules installed:
cpan App::cpanminus
cpanm XML::Parser
Using bash scripts
Each script comes with a helper: check it out with --help
!
Careful! most scripts expect data output by pyfn convert ...
to be located under pyfn/experiments/xp_XYZ/data
where XYZ
stands for
the experiments number and is specified using the -x XYZ
argument, and where
the experiments
directory is located at the same level as the scripts
directory. This opinionated choice has proven extremely useful in launching
scripts by batch on a large set of experiments as it avoids having to input
the full path each time.
Make sure to use
pyfn convert \
--from ... \
--to ... \
--source ... \
--target /abs/path/to/pyfn/experiments/xp_XYZ/data \
--splits ...
BEFORE calling preprocess.sh
, prepare.sh
, semafor.sh
or
open-sesame.sh
preprocess.sh
Use preprocess.sh
to POS-tag and dependency-parse FrameNet splits generated
with pyfn convert ...
. The helper should display:
Usage: ${0##*/} [-h] -x XP_NUM -t {mxpost,nlp4j} -p {semafor,open-sesame} [-d {mst,bmst,barch}] [-v]
Preprocess FrameNet train/dev/test splits.
-h, --help display this help and exit
-x, --xp XP_NUM xp number written as 3 digits (e.g. 001)
-t, --tagger {mxpost,nlp4j} pos tagger to be used: 'mxpost' or 'nlp4j'
-p, --parser {semafor,open-sesame} frame semantic parser to be used: 'semafor' or 'open-sesame'
-d, --dep {mst,bmst,barch} dependency parser to be used: 'mst', 'bmst' or 'barch'
-v, --dev if set, script will also preprocess dev splits
Suppose you generated FrameNet splits for SEMAFOR using:
pyfn convert \
--from fnxml \
--to semafor \
--source /path/to/fndata-1.7-with-dev \
--target /path/to/experiments/xp_001/data \
--splits train \
--output_sentences
You can preprocess those splits with NLP4J and BMST using
./preprocess.sh -x 001 -t nlp4j -d bmst -p semafor
prepare.sh
Use prepare.sh
to automatically generate misc. data required by the
frame semantic parsing pipeline, such as gold SEMEVAL XML files for scoring,
the framenet.frame.element.map
and the hierarchy .csv
files
used by SEMAFOR, or the frames.xml
and frRelations.xml
files used by
both SEMAFOR and OPEN-SESAME. The helper should display:
Usage: ${0##*/} [-h] -x XP_NUM -p {semafor,open-sesame} -s {dev,test} -f FN_DATA_DIR [-u] [-e]
Prepare misc. data for frame semantic parsing.
-h, --help display this help and exit
-x, --xp XP_NUM xp number written as 3 digits (e.g. 001)
-p, --parser {semafor,open-sesame} frame semantic parser to be used: 'semafor' or 'open-sesame'
-s, --splits {dev,test} which splits to score: dev or test
-f, --fn FN_DATA_DIR absolute path to FrameNet data directory
-u, --with_hierarchy if specified, will use the hierarchy feature
-e, --with_exemplars if specified, will use the exemplars
Suppose you generated FrameNet splits for SEMAFOR using:
pyfn convert \
--from fnxml \
--to semafor \
--source /path/to/fndata-1.7-with-dev \
--target /path/to/experiments/xp_001/data \
--splits train \
--output_sentences
You can prepare SEMAFOR data using:
./prepare.sh -x 001 -p semafor -s test -f /path/to/fndata-1.7-with-dev
frameid.sh
Use frameid.sh
to perform frame identification using SIMPLEFRAMEID.
The helper should display:
Usage: ${0##*/} [-h] -m {train,decode} -x XP_NUM [-p {semafor,open-sesame}]
Perform frame identification.
-h, --help display this help and exit
-m, --mode train on all models or decode using a single model
-x, --xp XP_NUM xp number written as 3 digits (e.g. 001)
-p, --parser {semafor,open-sesame} formalize decoded frames for specified parser
Suppose you generated FrameNet splits for SEMAFOR using:
pyfn convert \
--from fnxml \
--to semafor \
--source /path/to/fndata-1.7-with-dev \
--target /path/to/experiments/xp_101/data \
--splits train \
--output_sentences
After preprocessing, you can train the SIMPLEFRAMEID parser using:
./frameid.sh -m train -x 101
and decode (before decoding argument identification) using:
./frameid.sh -m decode -x 101 -p semafor
semafor.sh
Use semafor.sh
to train the SEMAFOR parser or decode the test/dev splits.
The helper should display:
Usage: ${0##*/} [-h] -m {train,decode} -x XP_NUM [-s {dev,test}] [-u]
Train or decode with the SEMAFOR parser.
-h, --help display this help and exit
-m, --mode {train,decode} semafor mode to use: train or decode
-x, --xp XP_NUM xp number written as 3 digits (e.g. 001)
-s, --splits {dev,test} which splits to use in decode mode: dev or test
-u, --with_hierarchy if specified, parser will use the hierarchy feature
Suppose you generated FrameNet splits for SEMAFOR using:
pyfn convert \
--from fnxml \
--to semafor \
--source /path/to/fndata-1.7-with-dev \
--target /path/to/experiments/xp_001/data \
--splits train \
--output_sentences
After preprocessing and preparation, you can train the SEMAFOR parser using:
./semafor.sh -m train -x 001
and decode the test splits using:
./semafor.sh -m decode -x 001 -s test
open-sesame.sh
Use open-sesame.sh
to train the OPEN-SESMAE parser or decode the test/dev splits.
The helper should display:
Usage: ${0##*/} [-h] -m {train,decode} -x XP_NUM [-s {dev,test}] [-d] [-u]
Train or decode with the OPEN-SESAME parser.
-h, --help display this help and exit
-m, --mode {train,decode} open-sesame mode to use: train or decode
-x, --xp XP_NUM xp number written as 3 digits (e.g. 001)
-s, --splits {dev,test} which splits to use in decode mode: dev or test
-d, --with_dep_parses if specified, parser will use dependency parses
-u, --with_hierarchy if specified, parser will use the hierarchy feature
Suppose you generated FrameNet splits for OPEN-SESAME using:
pyfn convert \
--from fnxml \
--to bios \
--source /path/to/fndata-1.7-with-dev \
--target /path/to/experiments/xp_002/data \
--splits train \
--output_sentences \
--filter overlap_fes
After preprocessing and preparation, you can train the SEMAFOR parser using:
./open-sesame.sh -m train -x 002
and decode the test splits using:
./open-sesame.sh -m decode -x 002 -s test
score.sh
Use score.sh
to obtain P/R/F1 scores for frame semantic parsing on
dev/test splits with the SEMEVAL scoring script, using gold of predicted frames.
The helper should display:
Usage: ${0##*/} [-h] -x XP_NUM -p {semafor,open-sesame} -s {dev,test} -f {gold,predicted}
Score frame semantic parsing with a modified version of the SEMEVAL scoring script.
-h, --help display this help and exit
-x, --xp XP_NUM xp number written as 3 digits (e.g. 001)
-p, --parser {semafor,open-sesame} frame semantic parser to be used: 'semafor' or 'open-sesame'
-s, --splits {dev,test} which splits to score: dev or test
-f, --frames {gold,predicted} score with gold or predicted frames
Note that scoring is done with an updated version of the SEMEVAL perl script,
in order to obtain more robust scores across setups. For a full account
of the modifications, refer to (Kabbach et al., 2018) and to the perl scripts
located under lib/semeval/
.
To obtain scores for SEMAFOR using gold frames on test splits, use:
./score.sh -x XYZ -p semafor -s test -f gold
To obtain scores for SEMAFOR using predicted frames on test splits, use:
./score.sh -x XYZ -p semafor -s test -f predicted
Replication
The experiments
directory provides a detailed set of instructions to
replicate all results reported in (Kabbach et al., 2018) on experimental
butterfly effects in frame semantic parsing. Those instructions can be used
to compare the performances of different frame semantic parsers in various
experimental setups.
Marshalling and Unmarshalling FrameNet XML data
pyfn
provides a set of Python models to process FrameNet XML data.
Those can be used to help you build you own frame semantic parser.
The core of the pyfn
models is the AnnotationSet
corresponding to an
XML <annotationSet>
tag. It stores various information
regarding a given set of FrameNet annotation for a given target in a given sentence.
The notable innovations are the labelstore
and the valenceunitstore
, which
store FrameNet labels (FE/PT/GF) in their original formats, and in custom
formats which may prove useful for frame semantic parsing.
Explore the various models under the pyfn.models
directory of the pyfn
package.
Unmarshalling FrameNet XML data
To convert a list of fulltext.xml files and/or lu.xml files to a generator
over pyfn.AnnotationSet
objects, with no overlap between train/dev/test splits, use:
import pyfn.marshalling.unmarshallers.framenet as fn_unmarshaller
if __name__ == '__main__':
splits_dirpath = '/abs/path/to/framenet-1.x-with-dev/'
splits = 'train'
with_exemplars = False
annosets_dict = fn_unmarshaller.get_annosets_dict(splits_dirpath,
splits, with_exemplars)
splits_dirpath
should point at the directory containing train/dev/test
splits directories (see detailed structure above).
get_annosets_dict
will return a string to AnnotationSet generator dict.
It will ensure no overlap between train/dev/test splits.
Calling get_annosets_dict
on splits='test'
will return a dictionary
with a single 'test'
key. Calling get_annosets_dict
on splits='dev'
will return a dictionary with two keys: 'dev'
and 'test'
.
Calling get_annosets_dict
on splits='train'
will return a dictionary
with three keys: 'train'
, 'dev'
and 'test'
.
To iterate over the list of AnnotationSet objects of each key, you can then do:
for (splits, annosets) in annosets_dict.items():
print('Iterating over annotationsets for splits: {}'.format(splits))
for annoset in annosets:
print('annoset with #id = {}'.format(annoset._id))
Or simply, to iterate over a specific key values (such as train annosets):
for annoset in annosets_dict['train']:
print('annoset with #id = {}'.format(annoset._id))
Note that for performance, annosets is not a list but a generator.
Unmarshalling OPEN-SESAME BIOS data
To convert a .bios
file with its corresponding .sentences
file to
a generator over pyfn.AnnotationSet
objects, use:
import pyfn.marshalling.unmarshallers.bios as bios_unmarshaller
if __name__ == '__main__':
bios_filepath = '/abs/path/to/.bios'
sent_filepath = '/abs/path/to/.sentences'
annosets = bios_unmarshaller.unmarshall_annosets(bios_filepath,
sent_filepath)
for annoset in annosets:
print('annoset with #id = {}'.format(annoset._id))
Important! the .bios
and .sentences
files must have been generated
with pyfn convert ... --to bios ...
with the --filter overlap_fes
parameter.
Unmarshalling SEMAFOR CONLL data
To convert a .frame.elements
file with its corresponding .sentences
file to a generator over pyfn.AnnotationSet
objects, use:
import pyfn.marshalling.unmarshallers.semafor as semafor_unmarshaller
if __name__ == '__main__':
semafor_filepath = '/abs/path/to/.frame.elements'
sent_filepath = '/abs/path/to/.sentences'
annosets = semafor_unmarshaller.unmarshall_annosets(semafor_filepath,
sent_filepath)
for annoset in annosets:
print('annoset with #id = {}'.format(annoset._id))
Unmarshalling SEMEVAL XML data
To convert a SEMEVAL .xml
file with its corresponding .sentences
file to a generator over pyfn.AnnotationSet
objects, use:
import pyfn.marshalling.unmarshallers.semeval as semeval_unmarshaller
if __name__ == '__main__':
xml_filepath = '/abs/path/to/semeval/.xml'
annosetss = semeval_unmarshaller.unmarshall_annosets(xml_filepath)
By default unmarshall_annosets
for SEMEVAL will return a generator over embedded annotationsets. To iterate over a single annotationset, use:
for annosets in annosetss:
for annoset in annosets:
print('annoset with #id = {}'.format(annoset._id))
To return a 'flat' list of annosets, pass in the flatten=True
parameter:
import pyfn.marshalling.unmarshallers.semeval as semeval_unmarshaller
if __name__ == '__main__':
xml_filepath = '/abs/path/to/semeval/.xml'
annosets = semeval_unmarshaller.unmarshall_annosets(xml_filepath, flatten=True)
for annoset in annosets:
print('annoset with #id = {}'.format(annoset._id))
Marshalling to OPEN-SESAME BIOS
To convert a dict of splits
to pyfn.AnnotationSet
objects to OPEN-SESAME-style .bios
, refer to
pyfn.marshalling.marshallers.bios.marshall_annosets_dict
Marshalling to SEMAFOR CONLL
To convert a dict of splits
to pyfn.AnnotationSet
objects to SEMAFOR-style .frame.elements
, refer to
pyfn.marshalling.marshallers.semafor.marshall_annosets_dict
Marshalling to SEMEVAL XML
To convert a list of pyfn.AnnotationSet
objects to SEMEVAL-style .xml
,
refer to pyfn.marshalling.marshallers.semeval.marshall_annosets
Marshalling to .csv hierarchy
To convert a list of relations to a .csv
file, refer to
pyfn.marshalling.marshallers.hierarchy.marshall_relations
Citation
If you use pyfn
please cite:
@InProceedings{C18-1267,
author = "Kabbach, Alexandre
and Ribeyre, Corentin
and Herbelot, Aur{\'e}lie",
title = "Butterfly Effects in Frame Semantic Parsing: impact of data processing on model ranking",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
year = "2018",
publisher = "Association for Computational Linguistics",
pages = "3158--3169",
location = "Santa Fe, New Mexico, USA",
url = "http://aclweb.org/anthology/C18-1267"
}