/Holocron

PyTorch implementations of recent Computer Vision tricks

Primary LanguagePythonMIT LicenseMIT

Holocron

License Codacy Badge CircleCI codecov Docs

Implementations of recent Deep Learning tricks in Computer Vision, easily paired up with your favorite framework and model zoo.

Holocrons were information-storage datacron devices used by both the Jedi Order and the Sith that contained ancient lessons or valuable information in holographic form.

Source: Wookieepedia

Installation

This package was developed using minimal dependencies (pytorch, torchvision).

User installation

pip install git+https://github.com/frgfm/Holocron@master

Developer installation

git clone https://github.com/frgfm/Holocron.git
pip install -e Holocron/

Usage

nn

Main features
Usage

Similar usage to torch.nn

import torch.nn as nn
from holocron.nn import Mish, NLReLU

# Both modules inherit from torch.nn.Module and can be used as such
model = nn.Sequential(nn.Conv2d(3, 64, (3, 3)),
                      Mish(),
                      nn.Conv2d(64, 128, (3, 3)),
                      NLReLU(),)

models

Main features
Usage

Using the models module, you can easily load torch modules or full models:

from holocron.models.res2net import res2net
# Load pretrained Res2net
model = res2net(depth=50, num_classes=10, pretrained=True).eval()

Then, let's generate a random input image

import torch
# Get random image
img_tensor = torch.rand(1, 3, 600, 600) 

Now we can move them to GPU and forward them

# Move inputs and model to GPU
if torch.cuda.is_available():
    model = model.cuda()
    img_tensor = img_tensor.cuda()
# Forward
with torch.no_grad():
    output = model(img_tensor)

optim

Main features
Usage

The optimizer wrapper can be used on any torch.optim.optimizer.Optimizer object

from torchvision.models.resnet import resnet50
from holocron.optim import RaLars

model = resnet50()
# Common usage of optimizer
optimizer = RaLars(model.parameters(), lr=3e-4)
# Wrap it with Lookahead
optimizer = Lookahead(optimizer, sync_rate=0.5, sync_period=6)

for epoch in range(10):
    # Train for an epoch
    for input, target in dataset:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    val_loss = validate(...)

You can use the OneCycleScheduler as follows:

from torchvision.models.resnet import resnet50
from torch.optim import Adam
from holocron.optim.lr_scheduler import OneCycleScheduler

model = resnet50()
# Let's have different LRs for weight and biases for instance
bias_params, weight_params = [], []
for n, p in model.named_parameters():
	if n.endswith('.bias'):
		bias_params.append(p)
    else:
    	weight_params.append(p)
# We pass the parameters to the optimizer
optimizer = Adam([dict(params=weight_params, lr=2e-4), dict(params=bias_params, lr=1e-4)])

steps = 500
scheduler = OneCycleScheduler(optimizer, steps, cycle_momentum=False)
# Let's record the evolution of LR in each group
lrs = [[], []]
for step in range(steps):
	for idx, group in enumerate(optimizer.param_groups):
		lrs[idx].append(group['lr'])
	# Train your model and perform optimizer.step() here
	scheduler.step()

# And plot the result
import matplotlib.pyplot as plt
plt.plot(lrs[0], label='Weight LR'); plt.plot(lrs[1], label='Bias LR'); plt.legend(); plt.show()

onecycle

utils

Main features
Usage

The class activation map (CAM) extractor can be used as follows:

import requests
from PIL import Image
import matplotlib.pyplot as plt
from torchvision.models import resnet50
from torchvision.transforms import transforms
from torchvision.transforms.functional import to_pil_image
from holocron.utils import ActivationMapper, overlay_mask


# Pretrained imagenet model
model = resnet50(pretrained=True).eval()
# Specify layer to hook and fully connected
last_conv_layer = 'layer4'
fc_layer = 'fc'

# Hook the corresponding layer in the model
cam = ActivationMapper(model, last_conv_layer, fc_layer)

# Get a dog image
URL = 'https://www.woopets.fr/assets/races/000/030/mobile/berger-australien.jpg'
response = requests.get(URL)
file_name = URL.split('/')[-1]
with open(file_name, 'wb') as f:
    f.write(response.content)

# Forward an image
pil_img = Image.open(file_name, mode='r').convert('RGB')
preprocess = transforms.Compose([
   transforms.Resize((224,224)),
   transforms.ToTensor(),
   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
img_tensor = preprocess(pil_img)
out = model(img_tensor.unsqueeze(0))

# Select the class index
classes = {int(key):value for (key, value)
          in requests.get('https://s3.amazonaws.com/outcome-blog/imagenet/labels.json').json().items()}
class_idx = 232

# Use the hooked data to compute activation map
activation_maps = cam.get_activation_maps([class_idx])
# Convert it to PIL image
# The indexing below means first image in batch and first requested class
heatmap = to_pil_image(activation_maps[0, 0], mode='F')

# Plot the result
img = Image.open(file_name, mode='r').convert('RGB')
result = overlay_mask(img, heatmap)
plt.imshow(result); plt.axis('off'); plt.title(classes.get(class_idx)); plt.tight_layout; plt.show()

cam_sample

Documentation

The full package documentation is available here for detailed specifications. The documentation was built with Sphinx using a theme provided by Read the Docs

Submitting a request / Reporting an issue

Regarding issues, use the following format for the title:

[Topic] Your Issue name

Example:

[models resnet] Add spectral normalization option