Tips and tricks when using data manipulation in Python and Pandas
- git remote add origin bitbucket.giturladdress or - git remote set-url origin
- git pull
- git fetch --all
- git branch
- git checkout feature/sales_predictor
https://kb.objectrocket.com/redis/how-to-install-redis-on-ubuntu-using-docker-505 https://www.youtube.com/watch?v=3muR5gB8x2o&t=402s
GoogleCloudPlatform/getting-started-python#129
I experienced this issue when running a flask app locally against a remote CloudSQL db instance (using cloud_sql_proxy). My SQLALCHEMY_DATABASE_URI Connection looked like:
mysql+pymysql://{<user-name}:{<user-password>}@{<db-hostname>}/{<database-name>}?unix_socket=/cloudsql/{<connection-name>}
Turns out connections to CloudSQL can only use either TCP or unix socket, not both. Apparently the proxy uses TCP connection
Solution: remove "unix_socket" param when running locally against the live URI so it looks like this:
mysql+pymysql://{<user-name}:{<user-password>}@{<db-hostname>}/{<database-name>}
https://stackoverflow.com/questions/38955895/import-variable-from-parent-directory-in-python-package
https://chrisyeh96.github.io/2017/08/08/definitive-guide-python-imports.html
import sys, os.path
sys.path.append(os.path.abspath('../'))
from app import db
Replace app with name of parent folder
Import functions from child folders (model_admins.py in this case, this import is in the init.py file)
models_dir = (os.path.abspath(os.path.join(os.path.dirname(__file__) + '/models/')))
sys.path.append(models_dir)
from model_admins import VideoFileModelView, FacePhotoModelView, VideoHashListModelView, ScreenshotPhotoModelView # Import models admin pages
FILE STRUCTURE
app/
├── __init__.py
├── models
│ ├── __pycache__
│ │ ├── __init__.cpython-39.pyc
│ │ ├── model_admins.cpython-39.pyc
│ │ └── models.cpython-39.pyc
│ ├── model_admins.py
│ └── models.py
https://stackoverflow.com/questions/35321812/move-column-in-pandas-dataframe/35322540
a b x y
0 1 2 3 -1
1 2 4 6 -2
2 3 6 9 -3
3 4 8 12 -4
df = df[['a', 'y', 'b', 'x']]
https://stackoverflow.com/questions/39922986/pandas-group-by-and-sum
df.groupby(['Fruit','Name']).sum()
https://www.kaggle.com/cdabakoglu/time-series-forecasting-arima-lstm-prophet https://www.datacamp.com/community/tutorials/xgboost-in-python
https://stackabuse.com/one-hot-encoding-in-python-with-pandas-and-scikit-learn/
y = pd.get_dummies(df.Countries, prefix='Country')
print(y.head())
df[df["name"] != 'tom']
or
df[~df['name'].str.contains('tom')]
To remove on multiple criteria -- "~" is return opposite of True/False
df2[~(df2["name"].isin(['tom','lucy']))]
height width
0 40.0 10
1 20.0 9
2 3.4 4
# Use the height and width to calculate the area
def calculate_area(row):
return row['height'] * row['width']
rectangles_df.apply(calculate_area, axis=1)
0 400.0
1 180.0
2 13.6
dtype: float64
# Use .apply to save the new column if we'd like
rectangles_df['area'] = rectangles_df.apply(calculate_area, axis=1)
rectangles_df
height width area
0 40.0 10 400.0
1 20.0 9 180.0
2 3.4 4 13.6
https://medium.com/@oemer.aslantas/forecasting-sales-units-with-random-forest-regression-on-python-a75d92910b46 https://medium.com/@oemer.aslantas/a-real-world-example-of-predicting-sales-volume-using-xgboost-with-gridsearch-on-a-jupyternotebook-c6587506128d
https://stackoverflow.com/a/53482813/4861086
Filter_df = df[df.index.isin(my_list)]
- For a single column using pandas: df['DataFrame Column'] = df['DataFrame Column'].fillna(0)
- For a single column using numpy: df['DataFrame Column'] = df['DataFrame Column'].replace(np.nan, 0)
- For an entire DataFrame using pandas: df.fillna(0)
- For an entire DataFrame using numpy: df.replace(np.nan,0)
https://www.ablebits.com/office-addins-blog/2018/03/07/unmerge-cells-excel/
df.drop(df.iloc[:, 86:], inplace = True, axis=1) # Drop all columns after the 86th
df.drop(df.index[3:5]) # Drop columns between the 3rd and 5th
df.columns = (df.loc[0].astype(str).values + ' - ' + df.loc[1].astype(str).values)
# df = df.reset_index(drop=True)
Before:
# Initial DF
Employee details - Business Unit Employee details - Full name 2020-07-01 00:00:00 - In 2020-07-01 00:00:00 - Out 2020-07-02 00:00:00 - In 2020-07-02 00:00:00 - Out 2020-07-03 00:00:00 - In 2020-07-03 00:00:00 - Out 2020-07-04 00:00:00 - In 2020-07-04 00:00:00 - Out ... 2020-07-27 00:00:00 - In 2020-07-28 00:00:00 - Out 2020-07-28 00:00:00 - In 2020-07-29 00:00:00 - OUT 2020-07-29 00:00:00 - In 2020-07-30 00:00:00 - Out 2020-07-30 00:00:00 - In 2020-07-31 00:00:00 - Out 2020-07-31 00:00:00 - In 2020-07-31 00:00:00 - Out
2 Distribution Paul Kang'ethe Kuria 36.5 36.4 37.2 36.4 36.4 36.7 35.1 36.7 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 Commercial Samson Musyoka 35.7 36.7 37 36.7 36.7 35.7 35.6 36.4 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 Deport Clerk Sylvester Ngesa 36.2 36.7 36 36.7 36.7 36.5 35.9 36.2 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
5 Fullfiller James Mwendwa 36.7 36.5 36.7 36.5 36.5 36.2 36.6 36.7 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
6 Offloader Nicholas Kyalo 35.9 36.4 36.2 36.4 36.4 36.6 35.8 36.5 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
5 rows × 60 columns
https://stackoverflow.com/a/28654127/4861086
# Code Snippet
df1 = df1.melt(id_vars=["Employee details - Business Unit", "Employee details - Full name"],
var_name="Date",
value_name="Value")
After:
Employee details - Business Unit Employee details - Full name Date Value
0 DISTRIBUTION John Gatere 2020-07-01 00:00:00 - In 35.9
1 DISTRIBUTION Daniel Musyoka 2020-07-01 00:00:00 - In 34.9
2 Waiyaki Way Abisai Elia Muthoni 2020-07-01 00:00:00 - In 35.1
Before
Employee details - Business Unit Employee details - Full name Date Value
0 DISTRIBUTION John Gatere 2020-07-01 00:00:00 - In 35.9
1 DISTRIBUTION Daniel Musyoka 2020-07-01 00:00:00 - In 34.9
2 Waiyaki Way Abisai Elia Muthoni 2020-07-01 00:00:00 - In 35.1
https://cmdlinetips.com/2018/11/how-to-split-a-text-column-in-pandas/
# Split Column Into 2
df1[['Date','In/Out']] = df1.Date.str.split(" - ",expand=True)
df1.head()
After
Employee details - Business Unit Employee details - Full name Date Value In/Out
0 Distribution Paul Kang'ethe Kuria 2020-07-01 00:00:00 36.5 In
1 Commercial Samson Musyoka 2020-07-01 00:00:00 35.7 In
2 Deport Clerk Sylvester Ngesa 2020-07-01 00:00:00 36.2 In
https://stackoverflow.com/a/34811984/4861086
df['A'] = 'foo'
# Split dataframe based if [in or out] exists in the In/Out column and then concatenate
in_df = df1[df1['In/Out'].str.contains('In', case=False)]
out_df = df1[df1['In/Out'].str.contains('Out', case=False)]
https://stackoverflow.com/a/13413845/4861086
df = df[df['EPS'].notna()]
before
key val
id
2 foo oranges
2 bar bananas
2 baz apples
3 foo grapes
3 bar kiwis
after
key bar baz foo
id
2 bananas apples oranges
3 kiwis NaN grapes
https://stackoverflow.com/a/26256360/4861086
>>> df.reset_index().groupby(['id', 'key'])['val'].aggregate('first').unstack()
https://stackoverflow.com/a/46346235/4861086
df1 = df.loc[:, ~df.columns.str.endswith('Name')]
https://stackoverflow.com/a/44272830/4861086
df = df[df.columns.drop(list(df.filter(regex='Test')))]
higher_df = df[(df.price_per_KG > df.median_market_price)]
lower_df = df[(df.price_per_KG < df.median_market_price)]
equal_df = df[(df.price_per_KG == df.median_market_price)]
https://stackoverflow.com/a/26147330/4861086
df.columns = df.iloc[1]
https://stackoverflow.com/a/43620031/4861086
for row in df.itertuples():
print(row.A)
print(row.Index)
df['new_col'] = (df.col2/df.col3)
import seaborn as sns
# Week Trends
sns.set(rc={'figure.figsize': (19, 8)})
sns.lineplot(df['Week'], df['price_per_KG'], label="Our Price")
sns.lineplot(df['Week'], df['median_market_price'], label="Market Price")
- Model building is done after removing unneedded features in predictors as shown in the snippet below.
#Breaking the data and selecting features , predictors
from sklearn.model_selection import train_test_split
predictors=df_final.drop(['Sold Units','Date'],axis=1)
target=df_final['Sold Units']
x_train,x_cv,y_train,y_cv=train_test_split(predictors,target,test_size=0.2,random_state=7)
#Hypertuned Model
model = RandomForestRegressor(oob_score = True,n_jobs =3,random_state =7,
max_features = "auto", min_samples_leaf =4)
model.fit(x_train,y_train)
#R2 Score
y_pred = model.predict(x_cv)
r2_score(y_cv, y_pred)
#Plot feature importance
feat_importances = pd.Series(model.feature_importances_,
index=predictors.columns)
feat_importances.nlargest(10).plot(kind='barh')
#Import ML Algorithms
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import r2_score
#Comparing Algorithms
def scores(i):
lin = i()
lin.fit(x_train, y_train)
y_pred=lin.predict(x_cv)
lin_r= r2_score(y_cv, y_pred)
s.append(lin_r)
#Checking the scores by using our function
algos=[LinearRegression,KNeighborsRegressor,RandomForestRegressor,Lasso,ElasticNet,DecisionTreeRegressor]
s=[]
for i in algos:
scores(i)
#Checking the score
models = pd.DataFrame({
'Method': ['LinearRegression', 'KNeighborsRegressor',
'RandomForestRegressor', 'Lasso','DecisionTreeRegressor'],
'Score': [s[0],s[1],s[2],s[3],s[4]]})
models.sort_values(by='Score', ascending=False)
import seaborn as sns
sns.lineplot(df['Week'],df['Sold Units'])
#Yearly Trend
sns.lineplot(df['Year'],df['Sold Units'])
Loop rows in specific columns in 2 dataframes while extracting value from a row and wrting to another Pandas Dataframe
- Loop through 1st dataframe
- initiate variable
- Loop through 2nd dataframe
- if date in 1st df appears in 2nd df, create variable that holds new number
- write new number to 1st dataframe
for i, row_df1 in df1.iterrows():
predicted_sales_volumes = 0
for i_2, row_df2 in df2.iterrows():
if row_df1['delivery_date'] in row_df2['all_predicted_date']:
predicted_sales_volumes = int(predicted_sales_volumes) + int(row_df2['average_delivery_weight'])
df1.at[i, 'predicted_volumes'] = predicted_sales_volumes
Convert the column that is being traversed to a list containing the contents of the row while looping thorugh it
for i, row_volumes in df2.iterrows():
market_price = 0
market_price_delta = 0
for i_2, row_market_price in df1.iterrows():
#important part !!!!!!
date_list = []
date_list.append(pd.to_datetime(row_market_price['date']))
if row_volumes['delivery_date'] in date_list:
#important part ends !!!!!!
market_price = int(row_market_price['price_kg'])
market_price_delta = int(row_volumes['price_per_KG']) - market_price
df2.at[i, 'median_market_price'] = market_price
df2.at[i, 'market_price_delta'] = market_price_delta
The column was a timestamp datatype. Delte the column or make a new one with the same name.
https://stackoverflow.com/a/18173074/4861086
df = df[df.line_race != 0]
-
https://stackoverflow.com/a/39107328/4861086 (Collect dates between datetime ranges)
-
https://stackoverflow.com/a/45670296/4861086 (Loop through rows in a dataframe)
-
Begin loop through dataframe
-
Collect dates as list (by default)
-
Extract date from timestamp object
-
Write to dataframe
for i, row in df.iterrows():
range_val = pd.date_range(row['earliest_delivery'], row['latest_delivery'], freq=pd.DateOffset(days=row['avgtime_days']))
range_val = range_val.date
df.at[i, 'new_predicted_date'] = (range_val)
https://stackoverflow.com/a/19106012/4861086
In [243]: index = DatetimeIndex(s)
In [244]: index
Out[244]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-10-01 00:24:16, 2013-10-02 00:24:16]
Length: 2, Freq: None, Timezone: None
In [246]: index.date
Out[246]:
array([datetime.date(2013, 10, 1), datetime.date(2013, 10, 2)], dtype=object)
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
You are refrencing a series instead of an individual value, replace:
for row in next_purchase.itertuples():
earliest_date = row.earliest_delivery
with
for row in next_purchase.itertuples():
row.latest_delivery
or
latest_delivery = next_purchase.at[row.Index, 'latest_delivery']
or use a mask with datetime
https://stackoverflow.com/a/32723609/4861086
SELECT id_usuarioweb, CASE
WHEN COUNT(*) < 2
THEN 0
ELSE DATEDIFF(dd,
MIN(
dt_fechaventa
), MAX(
dt_fechaventa
)) / (
COUNT(*) -
1
)
END AS avgtime_days
FROM mytable
GROUP BY id_usuarioweb
https://stackoverflow.com/a/28648923/4861086
# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame
# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)
https://stackoverflow.com/questions/26133538/round-a-single-column-in-pandas
df.value1 = df.value1.round()
https://stackoverflow.com/a/46907838/4861086
df['new'] = df['transaction_date'] + pd.to_timedelta(df['payment_plan_days'], unit='d')
https://stackoverflow.com/a/46571728/4861086
df['x_DATE'] = df['DATE'] + pd.DateOffset(days=180)
next_purchase['avgtime_days'] = next_purchase['avgtime_days'].abs()
https://stackoverflow.com/a/19828119/4861086 (In the comment)
- Group by all required items plus columns we want to sum their distinct values.
- Do a scond group by where you sum the values in the column with distinct values.
Get all data that is not in the list
new_df = (old_df[~old_df.column_name.isin(list_name)])
Get all the data that is in a list
new_df = (old_df[old_df.column_name.isin(list_name)])
- Make sure other dataframe only has the columns we need to add and the columns we will merge with
- Perform an inner merge on both with origial df on left and other df on right
orig_df = orig_df.merge(other_df, how='inner', left_on=['delivery_date', 'product_item_name'],
right_on=['sale_date', 'product_item_name'])
volumes_sold = volumes_sold.drop(['delta'], axis=1)
# Create Seasonality Feature
# Create mask for different season time periods
season_1_start = '2019-09-01'
season_1_end = '2020-01-31'
season_2_start = '2020-04-01'
season_2_end = '2020-07-30'
season1_mask = ((volumes_sold['df'] >= season_1_start) & (volumes_sold['df'] <= season_1_end))
season2_mask = ((volumes_sold['df'] >= season_2_start) & (volumes_sold['df'] <= season_2_end))
conditions = [
(season1_mask == True),
(season1_mask == False),
(season2_mask == True),
(season2_mask == False)
]
choices = [1,0,1,0]
df['in_season'] = np.select(conditions, choices, default=0)
- Split dataframe by deleting columns we dont want added (https://stackoverflow.com/a/34683105/4861086)
- Perfrom groupping on columns we dont want added
- Perform add on columns we want added (https://stackoverflow.com/questions/35001996/pandas-grouping-dataframe-by-hundreds)maybe
# Copy Columns we need
new = old[['A', 'C', 'D']].copy()
# Delete Copied Columns
old = old.drop(columns=[ 'A', 'C', 'D'])
# Group many columns at once in new df
volumes_sold_encoded = volumes_sold_encoded.groupby('delivery_date').sum()
volumes_sold_shop_type.drop(columns=['Unnamed: 0'])
volumes_sold_encoded = volumes_sold_encoded.reset_index()
# Group old DF
# Merge both without suffix
volumes_sold_result_df.merge(volumes_sold_encoded, left_on='delivery_date', right_on='delivery_date', suffixes=(False, False))
-
Set conditions(Check if value is in list) or not (https://stackoverflow.com/questions/14057007/remove-rows-not-isinx)
-
Create choices based on whether or not item is in list
-
Apply choices using np.select (https://stackoverflow.com/questions/19913659/pandas-conditional-creation-of-a-series-dataframe-column)
conditions = [
(volumes_sold['delivery_date'].isin(kenyan_holidays)), # If item is in list
(~volumes_sold['delivery_date'].isin(kenyan_holidays))] # If item is not in list
choices = [1,0] # Apply 1st item if delivery date in list, 2nd item if item not in list
volumes_sold['holiday'] = np.select(conditions, choices, default=0) # Perform Operation
https://stackoverflow.com/a/51061094/4861086
# sns.pairplot(df,kind='reg',height=8, x_vars=['column1'], y_vars=['column2'])
g = sns.jointplot( "column1", "column2", data=df,
kind="reg", truncate=False,
color="m", height=7, logx = True)
g.ax_joint.set_xscale('log')
g.ax_joint.set_yscale('log')
plt.title('Watermelons ', y=20, fontsize = 16)
-group by customer, -then product name -then count the number of deliveries -and distinct number of weeks served, total deliveries for number of weeks
2.3 Get weekly reorder rate for each product per customer
deliveries_financed_loans['Week_Number'] = deliveries_financed_loans['delivery_date'].dt.week
reorder_rate_df = deliveries_financed_loans.groupby(['Unique_Stalls', 'product_name']).agg(
number_of_deliveries_per_customer=('delivery_callback_id', np.count_nonzero),
distinct_number_of_weeks=('Week_Number', pd.Series.nunique)
)
reorder_rate_df['weekly_reorder_rate'] = reorder_rate_df['number_of_deliveries_per_customer']/reorder_rate_df['distinct_number_of_weeks']
reorder_rate_df.to_excel("reorder_rate_df.xlsx")
new_reorder_rate_df = reorder_rate_df.groupby(['product_name']).agg(
average_weekly_customer_reorder_rate=('weekly_reorder_rate', np.average)
)
new_reorder_rate_df.reset_index(inplace=True)
2.4 Filter to only products that we focus on in analysis
# Drop via logic: similar to SQL 'WHERE' clause
product_list = ['Ajab home baking flour','Pembe Maize Flour','Soko Maize Flour','Biryani Rice',
'Halisi Cooking Oil','Postman Cooking Oil','Kabras Sugar','Afia Mango',
'Salit Cooking Oil','Pembe Home Baking Flour','Bananas','Potatoes',
'Tomatoes','Onions','Watermelon']
# new_reorder_rate_df[~new_reorder_rate_df.isin(product_list)]
new_reorder_rate_df = new_reorder_rate_df[new_reorder_rate_df.product_name.isin(product_list)]
https://stackoverflow.com/questions/15411158/pandas-countdistinct-equivalent
table.groupby('YEARMONTH').CLIENTCODE.nunique()
https://stackoverflow.com/a/22341390
col_one_list = df['one'].tolist()
https://stackoverflow.com/questions/41934584/how-to-drop-rows-by-list-in-pandas https://hackersandslackers.com/pandas-dataframe-drop/
print (df[~df.column_name.isin(list_name)])
https://plotly.com/python/box-plots/
import plotly.express as px
fig = px.box(df, y="column_1")
fig.show()
https://stackoverflow.com/a/47107164/4861086
Collect or create datetime data that we will use to compare the two different values
feb_date = '2020-02-01'
march_date = '2020-03-01'
april_date = '2020-04-01'
feb_date = pd.to_datetime(feb_date)
march_date = pd.to_datetime(march_date)
april_date = pd.to_datetime(april_date)
df['delivery_date'] = pd.to_datetime(df['delivery_date'])
Specify the date periods with which we will be comparing values
feb_df = df[(df.delivery_date < march_date) & (df.delivery_date > feb_date)]
march_df = df[(df.delivery_date < april_date) & (df.delivery_date > march_date)]
Merge both DFs
df_all = feb_df.merge(march_df.drop_duplicates(), on=['Unique_Stalls_x'], how='left', indicator=True)
#Drop rows that appearedn both
df_all.drop(df_all[df_all._merge == 'both'].index, inplace=True)
# Drop columns wth everything missing
df_all.dropna(axis='columns',how='all')
df_no_longer = df_all.groupby(['Unique_Stalls_x']).agg(
bales_bought=('uom_count_x', sum)
)
df_no_longer = df_no_longer.reset_index()
https://stackoverflow.com/questions/15411158/pandas-countdistinct-equivalent
# Number of unique cutomers in a day
new_df = df.groupby('delivery_date').Unique_Stalls.nunique()
#Merge with orignal df
result_df = pd.merge(df,
new_df,
on='delivery_date',
how='left')
result_df['delivery_date']= pd.to_datetime(result_df['delivery_date'])
# vendor_drops.fillna(0, inplace = True, axis=0)
corr_df = df.corr()
plt.figure(figsize = (13,10))
sns.heatmap(corr_df, annot=True)
plt.savefig('df_heatmap.png')
https://stackoverflow.com/questions/38819322/how-to-recover-deleted-ipython-notebooks
https://stackoverflow.com/questions/45592268/python-access-dictionary-inside-list-of-a-dictionary
my_nested_dictionary = {'mydict': {'A': 'Letter A', 'B': 'Letter C', 'C': 'Letter C'}}
print(my_nested_dictionary['mydict']['A'])
for key in geocode_result: #list
for k, v in key.items(): #JSON object collect value
if isinstance(v, dict):
if k == 'geometry': # If the key is geometry, get specified item
loc_list.at[item.Index, 'latitude'] = v['location']['lat']
loc_list.at[item.Index, 'longitude'] = v['location']['lng']
display('new_banana_drops', 'new_vendor_drops', pd.concat([new_banana_drops, new_vendor_drops]))
new_banana_df = pd.concat([new_banana_drops, new_vendor_drops])
%pip install -U googlemaps
import googlemaps
gmaps = googlemaps.Client(key='my_key')
# Geocoding an address
geocode_result = gmaps.geocode('KICC, Nairobi, Kenya')
print (geocode_result)
# Look up an address with reverse geocoding
reverse_geocode_result = gmaps.reverse_geocode((40.714224, -73.961452))
# Request directions via public transit
now = datetime.now()
directions_result = gmaps.directions("Sydney Town Hall",
"Parramatta, NSW",
mode="transit",
departure_time=now)
# Drop columns wth everything missing
df_all.dropna(axis='columns',how='all')
- Remove all 0s from a column that is undergoing calculations
# Remove 0s from dataframe
df = df[(df != 0).all(1)]
https://stackoverflow.com/a/22889503/4861086
from scipy import stats
# new_banana_df['average_daily_selling_price'] = stats.boxcox(new_banana_df.average_daily_selling_price)[0]
new_banana_df['average_daily_kg_selling_price'] = stats.boxcox(new_banana_df.average_daily_kg_selling_price)[0]
# new_banana_df['volumes_sold_KG'] = stats.boxcox(new_banana_df.volumes_sold_KG)[0]
Pandas error: Truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()
Replace and or or with & and | respectively. This typically happens when searching with multiple operands.
result = result[(result['var']>0.25) or (result['var']<-0.25)]
result = result[(result['var']>0.25) and (result['var']<-0.25)]
df.drop(df[df.score < 50].index, inplace=True)
df = df.drop(df[(df.score < 50) & (df.score > 20)].index)
new_banana_df['volumes_sold_KG'] = np.log(new_banana_df['volumes_sold_KG'])
# Create new column
df['new_clolumn] = ''
# Loop through dataframe appending to calculated column
for row in df.itertuples():
banana_dr_quantity = df.at[row.Index, 'quantity']
banana_dr_amount = df.at[row.Index, 'amount']
df.at[row.Index, 'price_per_KG'] = (banana_dr_amount/banana_dr_quantity)
https://stackoverflow.com/a/27360130
df = df.groupby(['column_1', 'column_2']).agg(
delivery_items=('column_3', list)
)
df = df.reset_index()
############## or ##########
df = df.groupby(['column_1', 'column_2']).agg(
delivery_items=('column_3', sum)
)
df = df.reset_index()
https://stackoverflow.com/a/55828762
df_1 = df.groupby(['product_name']).size()
df_1 = df_1.reset_index()
df = df_1.merge(df, left_on='product_name', right_on='product_name')
https://stackoverflow.com/questions/40192704/filter-pandas-dataframe-for-past-x-days
import datetime
import pandas as pd
df = df[(df.delivery_date < df.loan_startdate) & (df.delivery_date > (pd.to_datetime(df.loan_startdate) - pd.to_timedelta("30day")))]
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.busday_count.html
>>> # Number of weekdays in January 2011
... np.busday_count('2011-01', '2011-02')
21
>>> # Number of weekdays in 2011
... np.busday_count('2011', '2012')
260
>>> # Number of Saturdays in 2011
... np.busday_count('2011', '2012', weekmask='Sat')
53
for row in df.itertuples():
print(row.column_name)
df[row.column_name] = ""
https://stackoverflow.com/questions/31181295/converting-a-pandas-date-to-week-number
- Get the number of weeks indivdually from which something occured
df['Week_Number'] = df['delivery_date'].dt.week
- Aggregate the week number distinctly when grouping by
df = df.groupby(['Unique_Stalls']).agg(
distinct_number_of_weeks=('Week_Number', pd.Series.nunique),
distinct_deliveries=('delivery_id', pd.Series.nunique)
)
df = df.reset_index()
- There is a space in the title of one of our columns
- Create MultiIndex Dataframe
- Or group by again
- Reset the index
- Try get the Pivot again
df.loc[df['column_name'] == some_value]
df = df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
df = deliveries_df.loc[deliveries_df['delivery_date'] < deliveries_df['loan_startdate']]
https://stackoverflow.com/a/25748826
df['e'] = df.sum(axis=1)
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html
df.rename(columns={"A": "a", "B": "c"})
df.nsmallest(3,'column1')
df.nlargest(10,'column1')
df['day_of_week'] = df['my_dates'].dt.day_name()
import statsmodels.api as sm
import statsmodels.formula.api as smf
warnings.filterwarnings('ignore')
# lm = smf.ols('np.log(column1) ~ np.log(column2)', data=df).fit()
lm = smf.ols('column1 ~ column2', data=df).fit()
lm.summary()
https://webapps.stackexchange.com/a/102780
new_df = old_df[old_df.column_name == 'Biryani Rice']
milk_vendor_drops.head(5)
https://stackoverflow.com/questions/13411544/delete-column-from-pandas-dataframe
del df['column_name']
df.drop(df.columns[22:56], axis=1, inplace=True)
df_all.drop(['delivery_date_x', 'depot_name_x', 'route_name_x', 'shop_type_x', 'delivery_id_x', 'product_name_x',
'product_item_name_x', 'Weight_x', 'Amount_x'], axis=1, inplace=True)
https://seaborn.pydata.org/examples/regression_marginals.html
import seaborn as sns
sns.jointplot("average_selling_price", "volumes_sold", data=milk_vendor_drops,
kind="reg", truncate=False,
color="m", height=7)
plt.title('Basmati Rice', y=5, fontsize = 16)
Append values to dataframe column while looping through it / Amend values in dataframe while looping
https://stackoverflow.com/a/47604317/4861086
for row in df.itertuples():
if <something>:
df.at[row.Index, 'column_name'] = x
else:
df.at[row.Index, 'column_name'] = x
df.loc[row.Index, 'ifor'] = x
for row in df.itertuples():
if row.column_name:
https://stackoverflow.com/a/34507381
pd.to_datetime(df.col2, errors='coerce')
if isinstance(VARIABLE, float):
https://stackoverflow.com/a/45716191/4861086
for item in df.itertuples():
print(item.column_name, item.column_name)
https://cmdlinetips.com/2018/04/how-to-drop-one-or-more-columns-in-pandas-dataframe/
# pandas drop columns using list of column names
gapminder_ocean.drop(['pop', 'gdpPercap', 'continent'], axis=1)
banana_drops = agg_banana_df.groupby(['delivery_date']).agg(
total_volumes_sold=('Weight', sum),
avg_drop_size=('dropsize', np.average),
median_drop_size=('dropsize', np.median),
number_of_unique_customers=('Unique_Stalls', pd.Series.nunique),
number_of_drops=('number_of_drops', np.average)
)
banana_drops = banana_drops.reset_index()
corr_df = vendor_drops.corr()
corr_df.to_excel('3_FFV_matrix.xlsx')
plt.figure(figsize = (13,10))
sns.heatmap(corr_df, annot=True)
plt.savefig('ajab_corr_heatmap.png')
sns.pairplot(vendor_drops, kind='reg', height=10, x_vars=['selling_price'], y_vars=['gross_profit'])
OR
plt.figure(figsize = (10,7))
sns.regplot(data = vendor_drops , x=vendor_drops['selling_price'], y=vendor_drops['gross_profit'])
import seaborn as sns
corr_df = new_banana_df.corr()
plt.figure(figsize = (13,10))
sns.heatmap(corr_df, annot=True)
plt.savefig('banana_heatmap.png')
new_df.to_excel("ajab_bananas.xlsx")
https://datafai.com/2017/11/30/price-elasticity-of-demand/ https://www.statworx.com/ch/blog/food-for-regression-using-sales-data-to-identify-price-elasticity/ https://medium.com/teconomics-blog/how-to-get-the-price-right-9fda84a33fe5
https://www.shanelynn.ie/merge-join-dataframes-python-pandas-index-1/
(df1)
product_name number_of_purchases
0 Afia Mango 180
1 Afia Mixed Fruit 107
2 Afia Multi-Vitamin 15
3 Afia Orange 4
4 Afia Tropical 3
(df2)
product_name total_weight_per_product total_amount_per_product
0 Afia Mango 872.4 102950.0
1 Afia Mixed Fruit 520.8 61620.0
2 Afia Multi-Vitamin 73.2 8500.0
3 Afia Orange 14.4 1790.0
4 Afia Tropical 21.6 2420.0
result_df = df_1.merge(df_2, left_on='product_name', right_on='product_name')
result_df.head(5)
product_name number_of_purchases total_weight_per_product total_amount_per_product
0 Afia Mango 180 872.4 102950.0
1 Afia Mixed Fruit 107 520.8 61620.0
2 Afia Multi-Vitamin 15 73.2 8500.0
3 Afia Orange 4 14.4 1790.0
4 Afia Tropical 3 21.6 2420.0
### Create column with number of something
number_of_drops_column = banana_drops.groupby(['delivery_date']).size().to_frame(
name='number_of_drops')
### Merge column with the rest of the dataset
agg_banana_df = banana_drops.merge(number_of_drops_column,
left_on=['delivery_date'] ,right_on=['delivery_date'])
agg_banana_df.head(5)
_ih[-10:]
https://stackoverflow.com/questions/18554920/pandas-aggregate-count-distinct
banana_drops = agg_banana_df.groupby(['delivery_date', 'order_date']).agg(
number_of_unique_customers=('Unique_Stalls', pd.Series.nunique)
)
banana_drops = banana_drops.reset_index()
DataFrame.fillna()
https://www.geeksforgeeks.org/adding-new-column-to-existing-dataframe-in-pandas/
# Create new column
df['new_clolumn] = ''
# Loop through dataframe appending to calculated column
for row in df.itertuples():
banana_dr_quantity = df.at[row.Index, 'quantity']
banana_dr_amount = df.at[row.Index, 'amount']
df.at[row.Index, 'price_per_KG'] = (banana_dr_amount/banana_dr_quantity)
corr_df = dataframe.corr()
corr_df.to_excel('all_banana_matrix.xlsx')
plt.figure(figsize = (13,10))
sns.heatmap(corr_df, annot=True)
plt.savefig('banana_matrix.xlsx_corr_heatmap.png')
# Create dataframes with data from the separate date ranges
start_date_old = '2019-11-01'
end_date_old = '2019-11-30'
start_date = '2020-02-01'
end_date = '2020-02-29'
mask_old = (final_banana_df['delivery_date'] >= start_date_old) & (final_banana_df['delivery_date'] <= end_date_old)
old_df = final_banana_df.loc[mask_old]
mask_new = (final_banana_df['delivery_date'] >= start_date) & (final_banana_df['delivery_date'] <= end_date)#
new_df = final_banana_df.loc[mask_new]
# Check if values in one dataframe appear in another and create a new column to hold this boolean
new_df = new_df.assign(in_old_df=new_df.Unique_Stalls.isin(old_df.Unique_Stalls).astype(str))
new_df = new_df[new_df.in_old_df == 'True']
# Delete column if need be
del new_df['in_old_df']
foo bar baz zoo
0 one A 1 x
1 one B 2 y
2 one C 3 z
3 two A 4 q
4 two B 5 w
5 two C 6 t
df.pivot(index='foo', columns='bar', values='baz')
bar A B C
foo
one 1 2 3
two 4 5 6
- When there is a Multi-Indexed dataframe, reset the index first with
df = df.reset_index()
df.fillna(0)
final_df = final_df.append(full_df)
mask = df.iloc[0].isin(['Apples','Pears'])
print (mask)
Fav-fruit True
Unnamed1 False
Unnamed2 True
Cost False
Purchsd? False
Unnamed3 False
Name: 0, dtype: bool
print (~mask)
Fav-fruit False
Unnamed1 True
Unnamed2 False
Cost True
Purchsd? True
Unnamed3 True
Name: 0, dtype: bool
print (df.loc[:, ~mask])
Unnamed1 Cost Purchsd? Unnamed3
0 Bananas NaN Yes No
1 NaN 0.1 NaN No
2 NaN 0.3 NaN No
3 NaN 0.1 Yes NaN
https://pythonexamples.org/pandas-dataframe-add-append-row/
import pandas as pd
data = {'name': ['Somu', 'Kiku', 'Amol', 'Lini'],
'physics': [68, 74, 77, 78],
'chemistry': [84, 56, 73, 69],
'algebra': [78, 88, 82, 87]}
#create dataframe
df_marks = pd.DataFrame(data)
new_row = {'name':'Geo', 'physics':87, 'chemistry':92, 'algebra':97}
#append row to the dataframe
df_marks = df_marks.append(new_row, ignore_index=True)
https://stackoverflow.com/questions/10434599/get-the-data-received-in-a-flask-request
# REST Handler
@app.route('/recommend', methods=['POST'])
def collect_test_results():
if request.method == 'POST':
Student_Name = request.values.getlist('Student_Name') # Name of the student
Video_Name = request.values.getlist('Video_Name') # Name of the video
Is_correct = request.values.getlist('Is_correct') # Whether or not the video is correct
https://stackoverflow.com/a/46569406/4861086
Since the application folder structure is fixed, we can use os.path to get the full path of the module we wish to import. For example, if this is the structure:
/home/me/application/app2/some_folder/vanilla.py
/home/me/application/app2/another_folder/mango.py
And let's say that you want to import the mango module. You could do the following in vanilla.py:
import sys, os.path
mango_dir = (os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
+ '/another_folder/')
sys.path.append(mango_dir)
import mango
OR FROM JUST A SUB-FOLDER
models_dir = (os.path.abspath(os.path.join(os.path.dirname(__file__) + '/models/')))
sys.path.append(models_dir)
import models # models.py