Code for the paper:
LeanDojo: Theorem Proving with Retrieval-Augmented Language Models
Under review, NeurIPS (Datasets and Benchmarks Track), 2023
Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala,
Peiyang Song, Shixing Yu, Saad Godil, Ryan Prenger, Anima Anandkumar
@article{yang2023leandojo,
title={{LeanDojo}: Theorem Proving with Retrieval-Augmented Language Models},
author={Yang, Kaiyu and Swope, Aidan and Gu, Alex and Chalamala, Rahul and Song, Peiyang and Yu, Shixing and Godil, Saad and Prenger, Ryan and Anandkumar, Anima},
journal={arXiv preprint arXiv:2306.15626},
year={2023}
}
- LeanDojo Website
- Using Trained Models on Hugging Face
- Requirements
- Premise Selection
- Theorem Proving
- Questions and Bugs
Model name | Model architecture | Training data | Input | Output |
---|---|---|---|---|
kaiyuy/leandojo-lean3-tacgen-byt5-small | ByT5 (encoder-decoder) | LeanDojo Benchmark (Lean 3) | Proof state | Tactic |
kaiyuy/leandojo-lean3-retriever-byt5-small | ByT5 (encoder-only) | LeanDojo Benchmark (Lean 3) | Proof state | Embedding |
kaiyuy/leandojo-lean4-tacgen-byt5-small | ByT5 (encoder-decoder) | LeanDojo Benchmark 4 (Lean 4) | Proof state | Tactic |
kaiyuy/leandojo-lean3-retriever-tacgen-byt5-small | ByT5 (encoder-decoder) | LeanDojo Benchmark (Lean 3) | Retrieved premises + proof state | Tactic |
Our trained models are available on HuggingFace Hub. With minimum dependencies (only PyTorch and HuggingFace Transformers), you can use our models to perform inference, finetune them on your own data, or plug them into your customized theorem proving pipeline. Below are some examples.
Our tactic generator is a ByT5 model finetuned to generate tactics given a proof state.
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("kaiyuy/leandojo-lean3-tacgen-byt5-small") # Or "lean3" -> "lean4"
model = AutoModelForSeq2SeqLM.from_pretrained("kaiyuy/leandojo-lean3-tacgen-byt5-small") # Or "lean3" -> "lean4"
state = "n : ℕ\n⊢ gcd n n = n"
tokenized_state = tokenizer(state, return_tensors="pt")
# Generate a single tactic.
tactic_ids = model.generate(tokenized_state.input_ids, max_length=1024)
tactic = tokenizer.decode(tactic_ids[0], skip_special_tokens=True)
print(tactic, end="\n\n")
# Generate multiple tactics via beam search.
tactic_candidates_ids = model.generate(
tokenized_state.input_ids,
max_length=1024,
num_beams=4,
length_penalty=0.0,
do_sample=False,
num_return_sequences=4,
early_stopping=False,
)
tactic_candidates = tokenizer.batch_decode(
tactic_candidates_ids, skip_special_tokens=True
)
for tac in tactic_candidates:
print(tac)
The expected output is shown below. <a>
and </a>
are markers of premises in generated tactics. You should remove them when using the tactics.
rw [<a>nat.gcd</a>, <a>nat.gcd_self_right</a>]
simp [<a>nat.gcd</a>]
unfold gcd
rw [<a>nat.gcd_comm</a>]
rw [<a>nat.gcd</a>, <a>nat.gcd_self_right</a>]
At the core of our premise retriever is a ByT5 encoder that embeds states and premises into vectors. You can use the vectors to perform retrieval by maximizing cosine similarity.
import torch
from typing import Union, List
from transformers import AutoTokenizer, T5EncoderModel
tokenizer = AutoTokenizer.from_pretrained("kaiyuy/leandojo-lean3-retriever-byt5-small")
model = T5EncoderModel.from_pretrained("kaiyuy/leandojo-lean3-retriever-byt5-small")
state = "n : ℕ\n⊢ gcd n n = n"
premises = [
"<a>vsub_eq_zero_iff_eq</a> @[simp] lemma vsub_eq_zero_iff_eq {p1 p2 : P} : p1 -ᵥ p2 = (0 : G) ↔ p1 = p2",
"<a>is_scalar_tower.coe_to_alg_hom'</a> @[simp] lemma coe_to_alg_hom' : (to_alg_hom R S A : S → A) = algebra_map S A",
"<a>polynomial.X_sub_C_ne_zero</a> theorem X_sub_C_ne_zero (r : R) : X - C r ≠ 0",
"<a>forall_true_iff</a> theorem forall_true_iff : (α → true) ↔ true",
"def <a>nat.gcd</a> : nat → nat → nat\n| 0 y := y\n| (succ x) y := have y % succ x < succ x, from mod_lt _ $ succ_pos _,\n gcd (y % succ x) (succ x)",
"@[simp] theorem <a>nat.gcd_zero_left</a> (x : nat) : gcd 0 x = x",
"@[simp] theorem <a>nat.gcd_succ</a> (x y : nat) : gcd (succ x) y = gcd (y % succ x) (succ x)",
"@[simp] theorem <a>nat.mod_self</a> (n : nat) : n % n = 0",
] # A corpus of premises to retrieve from.
@torch.no_grad()
def encode(s: Union[str, List[str]]) -> torch.Tensor:
"""Encode texts into feature vectors."""
if isinstance(s, str):
s = [s]
should_squeeze = True
else:
should_squeeze = False
tokenized_s = tokenizer(s, return_tensors="pt", padding=True)
hidden_state = model(tokenized_s.input_ids).last_hidden_state
lens = tokenized_s.attention_mask.sum(dim=1)
features = (hidden_state * tokenized_s.attention_mask.unsqueeze(2)).sum(dim=1) / lens.unsqueeze(1)
if should_squeeze:
features = features.squeeze()
return features
@torch.no_grad()
def retrieve(state: str, premises: List[str], k: int) -> List[str]:
"""Retrieve the top-k premises given a state."""
state_emb = encode(state)
premise_embs = encode(premises)
scores = (state_emb @ premise_embs.T)
topk = scores.topk(k).indices.tolist()
return [premises[i] for i in topk]
for p in retrieve(state, premises, k=2):
print(p, end="\n\n")
Expected output:
def <a>nat.gcd</a> : nat → nat → nat
| 0 y := y
| (succ x) y := have y % succ x < succ x, from mod_lt _ $ succ_pos _,
gcd (y % succ x) (succ x)
@[simp] theorem <a>nat.mod_self</a> (n : nat) : n % n = 0
ReProver's tactic generator takes as input the concatenation of retrieved premises and the state.
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("kaiyuy/leandojo-lean3-retriever-tacgen-byt5-small")
model = AutoModelForSeq2SeqLM.from_pretrained("kaiyuy/leandojo-lean3-retriever-tacgen-byt5-small")
state = "n : ℕ\n⊢ gcd n n = n"
retrieved_premises = [
"def <a>nat.gcd</a> : nat → nat → nat\n| 0 y := y\n| (succ x) y := have y % succ x < succ x, from mod_lt _ $ succ_pos _,\n gcd (y % succ x) (succ x)",
"@[simp] theorem <a>nat.mod_self</a> (n : nat) : n % n = 0",
]
input = "\n\n".join(retrieved_premises + [state])
print("------ INPUT ------\n", input)
tokenized_input = tokenizer(input, return_tensors="pt", max_length=2300, truncation=True)
# Generate a single tactic.
tactic_ids = model.generate(tokenized_input.input_ids, max_length=1024)
tactic = tokenizer.decode(tactic_ids[0], skip_special_tokens=True)
print("\n------ OUTPUT ------")
print(tactic, end="\n\n")
# Generate multiple tactics via beam search.
tactic_candidates_ids = model.generate(
tokenized_input.input_ids,
max_length=1024,
num_beams=4,
length_penalty=0.0,
do_sample=False,
num_return_sequences=4,
early_stopping=False,
)
tactic_candidates = tokenizer.batch_decode(
tactic_candidates_ids, skip_special_tokens=True
)
for tac in tactic_candidates:
print(tac)
Expected output:
------ INPUT ------
def <a>nat.gcd</a> : nat → nat → nat
| 0 y := y
| (succ x) y := have y % succ x < succ x, from mod_lt _ $ succ_pos _,
gcd (y % succ x) (succ x)
@[simp] theorem <a>nat.mod_self</a> (n : nat) : n % n = 0
n : ℕ
⊢ gcd n n = n
------ OUTPUT ------
cases n
cases n
simp [<a>nat.gcd</a>]
induction n with n ih
induction n with n IH
The rest of this document describes our system for training and evaluating LLM-based provers.
- Download and install Miniconda Python 3 (Anaconda should also work).
- Create the conda environment and install Python dependencies:
conda create --yes --name ReProver python=3.10 ipython numpy
conda activate ReProver
conda install --yes -c pytorch -c nvidia pytorch pytorch-cuda=11.7 # Use your own CUDA version.
pip install tqdm loguru deepspeed pytorch-lightning[extra] transformers tensorboard openai rank_bm25 lean-dojo
- Prepend the repo's root to the
PYTHONPATH
environment variable. - Make sure
wget
andtar
are available. Then, runpython scripts/download_data.py
to download LeanDojo Benchmark and LeanDojo Benchmark 4. They will be saved to./data
. - Use LeanDojo to trace all repos in the datasets:
python scripts/trace_repos.py
. This step may take some time. Please refer to LeanDojo's documentation if you encounter any issues.
We use Lightning CLI to create retrieval/main.py for training, validation, and testing the premise retrieval. It takes command line arguments as well as YAML config files. Please run python retrieval/main.py --help
or refer to the documentation of Lightning CLI for details.
The config files for our experiments are in ./retrieval/confs. We train all models on a single NVIDIA A100 GPU with 80GB memory. When using GPUs with smaller memory, you can change batch_size
, accumulate_grad_batches
, and num_negatives
. However, it may impact the performance due to in-batch negatives in DPR.
Run python retrieval/main.py fit --help
to see how to use the training script. For example:
python retrieval/main.py fit --config retrieval/confs/cli_random.yaml # Train the retriever on the `random` split.
python retrieval/main.py fit --config retrieval/confs/cli_novel_premises.yaml # Train the retriever on the `novel_premises` split.
The training script saves hyperparameters, model checkpoints, and other information to ./lightning_logs/EXP_ID/
, where EXP_ID
is an arbitrary experiment ID that will be printed by the training script.
After the models are trained, run the following commands to retrieve premises for all proof states in the dataset.
python retrieval/main.py predict --config retrieval/confs/cli_random.yaml --ckpt_path PATH_TO_RETRIEVER_CHECKPOINT
python retrieval/main.py predict --config retrieval/confs/cli_novel_premises.yaml --ckpt_path PATH_TO_RETRIEVER_CHECKPOINT
Retrieved premises are saved to ./lightning_logs/EXP_ID'/predictions.pickle
.
After predictions are saved, evaluate them using metrics such as R@1, R@10, and MRR.
python retrieval/evaluate.py --data-path data/leandojo_benchmark/random --preds-file PATH_TO_PREDICTIONS_PICKLE
python retrieval/evaluate.py --data-path data/leandojo_benchmark/novel_premises --preds-file PATH_TO_PREDICTIONS_PICKLE
Similar to premise selection, you can run python generator/main.py --help
and python generator/main.py fit --help
to check the command line options.
To train tactic generators without retrieval:
python generator/main.py fit --config generator/confs/cli_random.yaml # LeanDojo Benchmark, `random` split
python generator/main.py fit --config generator/confs/cli_novel_premises.yaml # LeanDojo Benchmark, `novel_premises` split
python generator/main.py fit --config generator/confs/cli_lean4_random.yaml # LeanDojo Benchmark 4, `random` split
To train models augmented by retrieval, we need to provide a retriever checkpoint and its predictions on all proof states in the dataset:
python generator/main.py fit --config generator/confs/cli_random.yaml --model.ret_ckpt_path PATH_TO_RETRIEVER_CHECKPOINT --data.preds_path PATH_TO_PREDICTIONS_PICKLE
python generator/main.py fit --config generator/confs/cli_novel_premises.yaml --model.ret_ckpt_path PATH_TO_RETRIEVER_CHECKPOINT --data.preds_path PATH_TO_PREDICTIONS_PICKLE
After the tactic generator is trained, we combine it with best-first search to prove theorems by interacting with Lean.
For models without retrieval, run:
python prover/evaluate.py --data-path data/leandojo_benchmark/random/ --ckpt_path PATH_TO_MODEL_CHECKPOINT --split test --num-cpus 8 --with-gpus
python prover/evaluate.py --data-path data/leandojo_benchmark/novel_premises/ --ckpt_path PATH_TO_MODEL_CHECKPOINT --split test --num-cpus 8 --with-gpus
For models with retrieval, first use the retriever to index the corpus (pre-computing the embeddings of all premises):
python retrieval/index.py --ckpt_path PATH_TO_RETRIEVER_CHECKPOINT --corpus-path data/leandojo_benchmark/corpus.jsonl --output-path PATH_TO_INDEXED_CORPUS
# Do it separately for two data splits.
Then, run:
python prover/evaluate.py --data-path data/leandojo_benchmark/random/ --ckpt_path PATH_TO_REPROVER_CHECKPOINT --indexed-corpus-path PATH_TO_INDEXED_CORPUS --split test --num-cpus 8 --with-gpus
python prover/evaluate.py --data-path data/leandojo_benchmark/novel_premises/ --ckpt_path PATH_TO_REPROVER_CHECKPOINT --indexed-corpus-path PATH_TO_INDEXED_CORPUS --split test --num-cpus 8 --with-gpus
- For general questions and discussions, please use GitHub Discussions.
- To report a potential bug, please open an issue.