/jqm_cvi

Small module with Cluster Validity Indexes (CVI)

Primary LanguagePythonMIT LicenseMIT

jqmcvi

Small module with Cluster Validity Indices (CVI)

Dunn and Davius Bouldin indices are implemented. It follows the equations presented in theory.pdf.

base.py : Python + NumPy

basec.pyx : Python + NumPy optimized with Cython

basec.pyx tested in Windows 8.1 x64, Python 3.4 and compiled with VS2010 (python setup.py build_ext -i)

Functions:

dunn(k_list):

Slow implementation of Dunn index that depends on numpy

-- basec.pyx Cython implementation is much faster but slower than dunn_fast()

	""" Dunn index [CVI]
    
    Parameters
    ----------
    k_list : list of np.arrays
        A list containing a numpy array for each cluster |c| = number of clusters
        c[K] is np.array([N, p]) (N : number of samples in cluster K, p : sample dimension)
    """

dunn_fast(points, labels):

Fast implementation of Dunn index that depends on numpy and sklearn.pairwise

-- No Cython implementation

	""" Dunn index - FAST (using sklearn pairwise euclidean_distance function)
    
    Parameters
    ----------
    points : np.array
        np.array([N, p]) of all points
    labels: np.array
        np.array([N]) labels of all points
    """

davisbouldin(k_list, k_centers):

Implementation of Davis Boulding index that depends on numpy

-- basec.pyx Cython implementation is much faster

	""" Davis Bouldin Index
	
	Parameters
    ----------
    k_list : list of np.arrays
        A list containing a numpy array for each cluster |c| = number of clusters
        c[K] is np.array([N, p]) (N : number of samples in cluster K, p : sample dimension)
    k_centers : np.array
        The array of the cluster centers (prototypes) of type np.array([K, p])
    """

Installation

python setup.py install