/a-unet

A toolbox that provides hackable building blocks for generic 1D/2D/3D UNets, in PyTorch.

Primary LanguagePythonMIT LicenseMIT

A-UNet

A toolbox that provides hackable building blocks for generic 1D/2D/3D UNets, in PyTorch.

Install

pip install a-unet

PyPI - Python Version

Usage

Basic UNet

(Code): A convolutional only UNet generic to any dimension.
from typing import List
from a_unet import T, Downsample, Repeat, ResnetBlock, Skip, Upsample
from torch import nn

def UNet(
    dim: int,
    in_channels: int,
    channels: List[int],
    factors: List[int],
    blocks: List[int],
) -> nn.Module:
    # Check lengths
    n_layers = len(channels)
    assert n_layers == len(factors) and n_layers == len(blocks), "lengths must match"

    # Resnet stack
    def Stack(channels: int, n_blocks: int) -> nn.Module:
        # The T function is used create a type template that pre-initializes paramters if called
        Block = T(ResnetBlock)(dim=dim, in_channels=channels, out_channels=channels)
        resnet = Repeat(Block, times=n_blocks)
        return resnet

    # Build UNet recursively
    def Net(i: int) -> nn.Module:
        if i == n_layers: return nn.Identity()
        in_ch, out_ch = (channels[i - 1] if i > 0 else in_channels), channels[i]
        factor = factors[i]
        # Wraps modules with skip connection that merges paths with torch.add
        return Skip(torch.add)(
            Downsample(dim=dim, factor=factor, in_channels=in_ch, out_channels=out_ch),
            Stack(channels=out_ch, n_blocks=blocks[i]),
            Net(i + 1),
            Stack(channels=out_ch, n_blocks=blocks[i]),
            Upsample(dim=dim, factor=factor, in_channels=out_ch, out_channels=in_ch),
        )
    return Net(0)
unet = UNet(
  dim=2,
  in_channels=8,
  channels=[256, 512],
  factors=[2, 2],
  blocks=[2, 2]
)
x = torch.randn(1, 8, 16, 16)
y = unet(x) # [1, 8, 16, 16]

ApeX UNet

(Code): ApeX is a UNet template complete with tools for easy customizability. The following example UNet includes multiple features: (1) custom item arrangement for resnets, modulation, attention, and cross attention, (2) custom skip connection with concatenation, (3) time conditioning (usually used for diffusion), (4) classifier free guidance.
from typing import Sequence, Optional, Callable

from a_unet import TimeConditioningPlugin, ClassifierFreeGuidancePlugin
from a_unet.apex import (
    XUNet,
    XBlock,
    ResnetItem as R,
    AttentionItem as A,
    CrossAttentionItem as C,
    ModulationItem as M,
    SkipCat
)

def UNet(
    dim: int,
    in_channels: int,
    channels: Sequence[int],
    factors: Sequence[int],
    items: Sequence[int],
    attentions: Sequence[int],
    cross_attentions: Sequence[int],
    attention_features: int,
    attention_heads: int,
    embedding_features: Optional[int] = None,
    skip_t: Callable = SkipCat,
    resnet_groups: int = 8,
    modulation_features: int = 1024,
    embedding_max_length: int = 0,
    use_classifier_free_guidance: bool = False,
    out_channels: Optional[int] = None,
):
    # Check lengths
    num_layers = len(channels)
    sequences = (channels, factors, items, attentions, cross_attentions)
    assert all(len(sequence) == num_layers for sequence in sequences)

    # Define UNet type with time conditioning and CFG plugins
    UNet = TimeConditioningPlugin(XUNet)
    if use_classifier_free_guidance:
        UNet = ClassifierFreeGuidancePlugin(UNet, embedding_max_length)

    return UNet(
        dim=dim,
        in_channels=in_channels,
        out_channels=out_channels,
        blocks=[
            XBlock(
                channels=channels,
                factor=factor,
                items=([R, M] + [A] * n_att + [C] * n_cross) * n_items,
            ) for channels, factor, n_items, n_att, n_cross in zip(*sequences)
        ],
        skip_t=skip_t,
        attention_features=attention_features,
        attention_heads=attention_heads,
        embedding_features=embedding_features,
        modulation_features=modulation_features,
        resnet_groups=resnet_groups
    )
unet = UNet(
    dim=2,
    in_channels=2,
    channels=[128, 256, 512, 1024],
    factors=[2, 2, 2, 2],
    items=[2, 2, 2, 2],
    attentions=[0, 0, 0, 1],
    cross_attentions=[1, 1, 1, 1],
    attention_features=64,
    attention_heads=8,
    embedding_features=768,
    use_classifier_free_guidance=False
)
x = torch.randn(2, 2, 64, 64)
time = [0.2, 0.5]
embedding = torch.randn(2, 512, 768)
y = unet(x, time=time, embedding=embedding) # [2, 2, 64, 64]