/torch-ccl

oneCCL Bindings for Pytorch*

Primary LanguageC++BSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

Intel® oneCCL Bindings for PyTorch (formerly known as torch_ccl)

This repository holds PyTorch bindings maintained by Intel for the Intel® oneAPI Collective Communications Library (oneCCL).

Introduction

PyTorch is an open-source machine learning framework.

Intel® oneCCL (collective communications library) is a library for efficient distributed deep learning training implementing such collectives like allreduce, allgather, alltoall. For more information on oneCCL, please refer to the oneCCL documentation and oneCCL specification.

oneccl_bindings_for_pytorch module implements PyTorch C10D ProcessGroup API and can be dynamically loaded as external ProcessGroup and only works on Linux platform now.

Capability

The table below shows which functions are available for use with CPU / Intel dGPU tensors.

CPU GPU
send × ×
recv × ×
broadcast
all_reduce
reduce
all_gather
gather
scatter × ×
reduce_scatter × ×
all_to_all
barrier

Pytorch API Align

We recommend Anaconda as Python package management system. The following is the corresponding branches (tags) of oneccl_bindings_for_pytorch and supported Pytorch.

torch oneccl_bindings_for_pytorch
master master
v1.13.0 ccl_torch1.13.100
v1.13.0 ccl_torch1.13
v1.12.1 ccl_torch1.12.100
v1.12.0 ccl_torch1.12
v1.11.0 ccl_torch1.11
v1.10.0 ccl_torch1.10
v1.9.0 ccl_torch1.9
v1.8.1 ccl_torch1.8
v1.7.1 ccl_torch1.7
v1.6.0 ccl_torch1.6
v1.5-rc3 beta09

The usage details can be found in the README of corresponding branch. The following part is about the usage of v1.9 tag. if you want to use other version of torch-ccl please checkout to that branch(tag). For pytorch-1.5.0-rc3, the #PR28068 and #PR32361 are need to dynamicall register external ProcessGroup and enable alltoall collective communication primitive. The patch file about these two PRs is in patches directory and you can use it directly.

Requirements

  • Python 3.6 or later and a C++17 compiler

  • PyTorch v1.13.0

Build Option List

The following build options are supported in Intel® oneCCL Bindings for PyTorch*.

Build Option Default Value Description
COMPUTE_BACKEND Set oneCCL COMPUTE_BACKEDN,set to dpcpp and use DPC++ Compiler to enable support for Intel XPU
CCL_PACKAGE_NAME oneccl-bind-pt Set Wheel Name
ONECCL_BINDINGS_FOR_PYTORCH_BACKEND cpu Set BACKEND
CCL_SHA_VERSION False Add git head sha version to Wheel name
BUILD_NO_ONECCL_PACKAGE False Package the Wheel without oneCCL library

Launch Option List

The following launch options are supported in Intel® oneCCL Bindings for PyTorch*.

Launch Option Default Value Description
ONECCL_BINDINGS_FOR_PYTORCH_ENV_VERBOSE 0 Set verbose level in ONECCL_BINDINGS_FOR_PYTORCH
ONECCL_BINDINGS_FOR_PYTORCH_ENV_WAIT_GDB 0 Set 1 to force the oneccl_bindings_for_pytorch wait for GDB attaching

Installation

Install from Source

  1. clone the oneccl_bindings_for_pytorch.

    git clone https://github.com/intel/torch-ccl.git && cd torch-ccl
    git submodule sync
    git submodule update --init --recursive
  2. Install oneccl_bindings_for_pytorch

    # for CPU Backend Only
    python setup.py install
    # use DPC++ Compiler to enable support for Intel XPU
    BUILD_NO_ONECCL_PACKAGE=ON COMPUTE_BACKEND=dpcpp python setup.py install

Note: To run the torch-ccl without oneCCL library installed, Please make sure you have installed oneCCL in the oneAPI basekit from https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#base-kit

source $basekit_root/ccl/latest/env/vars.sh

Install PreBuilt Wheel

Wheel files are avaiable for the following Python versions.

Extension Version Python 3.6 Python 3.7 Python 3.8 Python 3.9 Python 3.10
1.13.100
1.13
1.12.100
1.12.0
1.11.0
1.10.0

Installation for CPU:

python -m pip install oneccl_bind_pt==1.13 -f https://developer.intel.com/ipex-whl-stable-cpu

Installation for GPU:

python -m pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable-xpu

Usage

example.py

import torch.nn.parallel
import torch.distributed as dist
import oneccl_bindings_for_pytorch

...

os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29500'
os.environ['RANK'] = str(os.environ.get('PMI_RANK', 0))
os.environ['WORLD_SIZE'] = str(os.environ.get('PMI_SIZE', 1))

backend = 'ccl'
dist.init_process_group(backend, ...)
my_rank = dist.get_rank()
my_size = dist.get_world_size()
print("my rank = %d  my size = %d" % (my_rank, my_size))

...

model = torch.nn.parallel.DistributedDataParallel(model, ...)

...

(oneccl_bindings_for_pytorch is installed along with the MPI tool set.)

source <oneccl_bindings_for_pytorch_path>/env/setvars.sh

# eg:
#   $ oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)")
#   $ source $oneccl_bindings_for_pytorch_path/env/setvars.sh

mpirun -n <N> -ppn <PPN> -f <hostfile> python example.py

Performance Debugging

For debugging performance of communication primitives PyTorch's Autograd profiler can be used to inspect time spent inside oneCCL calls.

Example:

profiling.py

import torch.nn.parallel
import torch.distributed as dist
import oneccl_bindings_for_pytorch
import os

os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29500'
os.environ['RANK'] = str(os.environ.get('PMI_RANK', 0))
os.environ['WORLD_SIZE'] = str(os.environ.get('PMI_SIZE', 1))

backend = 'ccl'
dist.init_process_group(backend)
my_rank = dist.get_rank()
my_size = dist.get_world_size()
print("my rank = %d  my size = %d" % (my_rank, my_size))

x = torch.ones([2, 2])
y = torch.ones([4, 4])
with torch.autograd.profiler.profile(record_shapes=True) as prof:
    for _ in range(10):
        dist.all_reduce(x)
        dist.all_reduce(y)
dist.barrier()
print(prof.key_averages(group_by_input_shape=True).table(sort_by="self_cpu_time_total"))
mpirun -n 2 -l python profiling.py
[0] my rank = 0  my size = 2
[0] -----------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  --------------------
[0]                                                  Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls          Input Shapes
[0] -----------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  --------------------
[0]                oneccl_bindings_for_pytorch::allreduce        91.41%     297.900ms        91.41%     297.900ms      29.790ms            10              [[2, 2]]
[0]     oneccl_bindings_for_pytorch::wait::cpu::allreduce         8.24%      26.845ms         8.24%      26.845ms       2.684ms            10      [[2, 2], [2, 2]]
[0]     oneccl_bindings_for_pytorch::wait::cpu::allreduce         0.30%     973.651us         0.30%     973.651us      97.365us            10      [[4, 4], [4, 4]]
[0]                oneccl_bindings_for_pytorch::allreduce         0.06%     190.254us         0.06%     190.254us      19.025us            10              [[4, 4]]
[0] -----------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  --------------------
[0] Self CPU time total: 325.909ms
[0]
[1] my rank = 1  my size = 2
[1] -----------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  --------------------
[1]                                                  Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls          Input Shapes
[1] -----------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  --------------------
[1]                oneccl_bindings_for_pytorch::allreduce        96.03%     318.551ms        96.03%     318.551ms      31.855ms            10              [[2, 2]]
[1]     oneccl_bindings_for_pytorch::wait::cpu::allreduce         3.62%      12.019ms         3.62%      12.019ms       1.202ms            10      [[2, 2], [2, 2]]
[1]                oneccl_bindings_for_pytorch::allreduce         0.33%       1.082ms         0.33%       1.082ms     108.157us            10              [[4, 4]]
[1]     oneccl_bindings_for_pytorch::wait::cpu::allreduce         0.02%      56.505us         0.02%      56.505us       5.651us            10      [[4, 4], [4, 4]]
[1] -----------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  --------------------
[1] Self CPU time total: 331.708ms
[1]

License

BSD License