NeuraLint
is a toolset for verifying Deep Learning (DL) models using meta-modeling and graph transformations.
This toolset performs verification of DL models that are specified using graph transformations by the Groove toolset.
A DL program as input must be written using Tensorflow
or Keras
. First, the program is parsed to extract relevant information according to the meta-model. The model of the program is a graph that conforms to the type graph (meta-model). Then, the graph is verified by Groove
as a model checker. The output graph of Groove is used to extract relevant information for the final report.
groove-x_x_x-bin
and DNN-metamodel.gps
folders are the Groove toolset and type graph respectively which are needed for running NeuraLint
.
Keras_graphs
and TF_graphs
folders are also used for intermediate calculation and required to run NeuraLint
.
The tool is written in Python
and it can be easily run in the command line. To use the toolset, please enter following options with running command:
$ python endToEnd.py [name of deep learning programs (.py)] [input size] [output size] [parser type] [name of the output file]
-
[name of deep learning programs (.py)]
should be entered with.py
-
[input size]
and[output size]
should be entered as table like[x1, x2, x3, ...]
-
[parser type]
should betf
orkeras
-
[name of the output file]
should be entered without file type
The following code is a sample TensorFlow
script:
import tensorflow as tf
import click
import numpy as np
from tensorflow.keras.datasets import mnist
class Dataset:
def __init__(self, X, y, batch_size):
dset = tf.data.Dataset.from_tensor_slices((X, y))
dset = dset.map(self.preprocess_example)
dset = dset.shuffle(10000)
dset = dset.batch(batch_size)
self.dset = dset
self.iterator = self.dset.make_initializable_iterator()
self.next_batch = self.iterator.get_next()
def init(self, sess):
sess.run(self.iterator.initializer)
def preprocess_example(self, *example):
new_image = tf.image.convert_image_dtype(tf.reshape(example[0], [28, 28, 1]), tf.float32)
new_label = tf.cast(tf.one_hot(example[1], 10), tf.float32)
return new_image, new_label
def build_model(input, scope='lenet', reuse=False, training=True):
with tf.variable_scope(scope, reuse=reuse):
conv1 = tf.layers.conv2d(inputs=input,
filters=32,
kernel_size=[15, 15],
padding='valid',
activation=tf.nn.relu)
reg_conv1 = tf.layers.dropout(inputs=conv1, rate=0.35, training=training)
conv1_norm = tf.layers.batch_normalization(reg_conv1, training=training)
pool1 = tf.layers.max_pooling2d(inputs=conv1_norm, pool_size=[4, 4], strides=2)
conv2 = tf.layers.conv2d(inputs=pool1, filters=64, kernel_size=[7, 7],
padding='valid', activation=tf.nn.relu)
reg_conv2 = tf.layers.dropout(inputs=conv2, rate=0.3, training=training)
conv2_norm = tf.layers.batch_normalization(reg_conv2, training=training)
pool2 = tf.layers.max_pooling2d(inputs=conv2_norm, pool_size=[4, 4], strides=2)
pool2_flat = tf.layers.flatten(pool2)
dense = tf.layers.dense(inputs=pool2_flat, units=512, activation=tf.nn.relu)
dense_reg = tf.layers.dropout(inputs=dense, rate=0.25, training=training)
dense_norm = tf.layers.batch_normalization(dense_reg, training=training)
logits = tf.layers.dense(inputs=dense_norm, units=10, activation=None)
return logits
def train(n_epochs, learning_rate, batch_size):
X_train, y_train = mnist.load_data()[0]
X_test, y_test = mnist.load_data()[1]
train_dataset = Dataset(X_train, y_train, batch_size)
test_dataset = Dataset(X_test, y_test, batch_size)
X, y = train_dataset.next_batch
y_pred = build_model(X, scope='lenet', reuse=False, training=True)
train_loss = tf.losses.softmax_cross_entropy(y, y_pred)
train_acc = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(y_pred, 1)), tf.float32))
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(train_loss)
X_test, y_test = test_dataset.next_batch
y_pred_test = build_model(X_test, reuse=True, training=False)
test_loss = tf.losses.softmax_cross_entropy(y_test, y_pred_test)
test_acc = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y_test, 1),tf.argmax(y_pred_test, 1)), tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(n_epochs):
train_dataset.init(sess)
epoch_errs = []
epoch_accs = []
try:
while True:
_, err, acc = sess.run([train_op, train_loss, train_acc])
epoch_errs.append(err)
epoch_accs.append(acc)
except tf.errors.OutOfRangeError:
print(f"Epoch {epoch}:")
print(f" - Train err: {np.mean(epoch_errs)}")
print(f" - Train acc: {np.mean(epoch_accs)}")
test_dataset.init(sess)
test_errs = []
test_accs = []
try:
while True:
err, acc = sess.run([test_loss, test_acc])
test_errs.append(err)
test_accs.append(acc)
except tf.errors.OutOfRangeError:
epoch_test_err, epoch_test_acc = np.mean(test_errs), np.mean(test_accs)
print(f" - Test err: {epoch_test_err}")
print(f" - Test acc: {epoch_test_acc}")
@click.command()
@click.option('--n-epochs', type=int, default=5)
@click.option('--lr', type=float, default=3e-4)
@click.option('--batch-size', type=int, default=32)
def main(n_epochs, lr, batch_size):
train(n_epochs, lr, batch_size)
if __name__ == '__main__':
main()
User can use the following command to parse above-mentioned code using NeuraLint
:
$ python endToEnd.py tf_script.py [32,28,28,1] [32,10] tf result
The output of NeuraLint
is
tf_script.py
Layer 1 ==> A learning layer should no longer include a bias when it is followed by batchnorm., The local window size for spatial filtering should generally increase or stay the same throughout the convolutional layers.
Layer 3 ==> Batchnorm layer should be before the dropout., Dropout layer must be placed after the pooling layer to be more effective.
Layer 6 ==> A learning layer should no longer include a bias when it is followed by batchnorm., A processing layer should receive sufficient-sized feature space to perform its spatial filtering or pooling.
Layer 8 ==> Batchnorm layer should be before the dropout., Dropout layer must be placed after the pooling layer to be more effective.
Layer 10 ==> A processing layer should receive sufficient-sized feature space to perform its spatial filtering or pooling.
Layer 12 ==> A learning layer should no longer include a bias when it is followed by batchnorm.
Layer 14 ==> Batchnorm layer should be before the dropout.
The following code is a sample Keras
script:
from k.layers.convolutional import *
from k.layers import *
from k.layers.core import *
model = Sequential()
model.add(Conv1D(32,2, input_shape = (32, 1)))
model.add(Activation('relu'))
model.add(Conv1D(32,2))
model.add(Activation('relu'))
model.add(Conv1D(32,2))
model.add(Activation('relu'))
model.add(Conv1D(32,2))
model.add(Activation('relu'))
model.add(Dense(32))
model.add(Activation('sigmoid'))
model.compile(loss = 'binary_crossentropy',
optimizer = 'rmsprop',
metrics=['accuracy'])
model.fit(inputData,labelData)
Again, user can use the following command to parse mentioned code using NeuraLint
.
$ python endToEnd.py keras_script.py [32,32,1] [32,1] keras result
The result of NeuraLint
is:
keras_script.py
Learner ==> The loss should be correctly defined and connected to the layer in accordance with its input conditions (i.e.shape and type)-post_activation
Layer 7 ==> A processing layer that operates on a N-dimensional tensors, should receive a valid input tensor with exactly N-dimensional shape(missing flatten ).
Moreover, it can be called inside a DL program as a Python library on the top of TensorFlow/Keras. The developer can import NeuraLint
as a Python library and simply call it in his own code by feeding the DL model and receiving the analysis report. For example:
import neuraLint
...
report = neuraLint.check(model)
print(report)
This library is in the Python Library
folder. Please note that you should place groove-x_x_x-bin
and DNN-metamodel.gps
folders in its root prior to using it. An example is provided in main-sample.py
.
You can find the paper here and the citation is as follows:
@article{nikanjam21neuraLint,
author = {Nikanjam, Amin and Braiek, Houssem Ben and Morovati, Mohammad Mehdi and Khomh, Foutse},
title = {Automatic Fault Detection for Deep Learning Programs Using Graph Transformations},
year = {2021},
issue_date = {January 2022},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {31},
number = {1},
issn = {1049-331X},
url = {https://doi.org/10.1145/3470006},
doi = {10.1145/3470006},
}