Calculate the distance (in various units) between two points on Earth using their latitude and longitude.
$ pip install haversine
from haversine import haversine, Unit
lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
haversine(lyon, paris)
>> 392.2172595594006 # in kilometers
haversine(lyon, paris, unit=Unit.MILES)
>> 243.71201856934454 # in miles
# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71201856934454 # in miles
haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516 # in nautical miles
The haversine.Unit
enum contains all supported units:
import haversine
print(tuple(haversine.Unit))
outputs
(<Unit.FEET: 'ft'>, <Unit.INCHES: 'in'>, <Unit.KILOMETERS: 'km'>,
<Unit.METERS: 'm'>, <Unit.MILES: 'mi'>, <Unit.NAUTICAL_MILES: 'nmi'>)
You will need to add numpy in order to gain performance with vectors.
You can then do this:
from haversine import haversine_vector, Unit
lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)
haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)
>> array([ 392.21725956, 6163.43638211])
It is generally slower to use haversine_vector
to get distance between two points, but can be really fast to compare distances between two vectors.
Clone the project.
Install pipenv.
Run pipenv install --dev
Launch test with pipenv run pytest