- Build a simple langchain hook to read URL link contents
- Langchain crawling of arjunrao in notebook
- Decide between manual vs langchain crawling
- Crawl through pages
- Store contents in vectordb
- Init Ollama & LLM
- Ask questions to be answered without memory using vectordb (RAG)
- Simple chat interface with Chainlit
- Add short term memory
- Figure out how to run ollama in a container
- Containerize chainlit
- Run ollama with chainlit
- Add github action to build image + deploy to digital ocean
- Deploy chatbot to "cloud"
- Add black/isort
- Containerize data ingest
- Fix ollama reference in local vs container mode (ansible/terraform)
- Deploy data ingest process
- process to store chromadb to R2
- load chromadb up from R2 location
- Stream responses back instead of all together
- Add reasoning [Agent based retrieval]
- Add Streamlit Copilot at arjunrao.co
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python src/ingest.py
chainlit run src/chat.py
docker build -t askarjun:latest
docker-compose up
ollama pull nomic-embed-text
ollama pull mistral
docker exec -it askarjun-ollama-container-1 ollama pull nomic-embed-text
docker exec -it askarjun-ollama-container-1 ollama pull mistral
Models are stored in ./data/ollama
which are mapped into the container as a volume (see docker-compose.yml)
python src/r2.py