Blog -> https://bit.ly/pycateda-blog
-
Read the data and returns a DataFrame
-
Get a summary of basic descriptive analysis of the dataset
A. Top 5 rows
B. Bottom 5 rows
C. The shape of the Data Frame
D. Missing Values in the data frame
E. Duplicate rows
F. Descriptive statistics for Numerical + Categorical columns
G. Number of unique values for each feature
H. The unique identifier
I. Prints Unique Value of Each feature
J. Relative frequency (%) of unique values or bins of numerical features
-
Get the Count of Null Values in each column
-
Get Percentage % of missing values in each column
-
Shows Missing Values Plots of the DataFrame
-
Check numerical variables in the DataFrame
-
Check discrete variables in the Data Frame
-
Check Continuous variables in the Data Frame
-
Analyze continuous variables Visually in the Data Frame
-
Analyze Transformed ( Log ) Continuous Variables
-
Analyze Outliers in the data frame (Box Plots)