/CEU-R-prod

R materials for the "Data Infrastructure in Production" class at CEU

Primary LanguageR

Here you can find the materials for the 3rd and 4th week of the "Data Infrastructure in Production" course, part of the MSc in Business Analytics at CEU.

Table of Contents

Schedule

  • 11:00 - 12:30 Session 1
  • 12:30 - 13:30 Lunch
  • 13:30 - 15:00 Session 2
  • 15:00 - 15:30 Coffee break
  • 15:30 - 17:00 Session 3

Week 3: Using R in the Cloud

Goal: learn how to run and schedule R jobs and apps in the cloud.

Welcome to AWS!

  1. Use the central CEU AWS account: https://ceu.signin.aws.amazon.com/console

  2. Set up 2FA: https://console.aws.amazon.com/iam

  3. Secure your access keys:

    "When I woke up the next morning, I had four emails and a missed phone call from Amazon AWS - something about 140 servers running on my AWS account, mining Bitcoin" -- Hoffman said

    PS probably you do not really need to store any access keys, but you may rely on roles and KMS

  4. Let's use the eu-west-1 Ireland region

Getting access to EC2 boxes

Note: we follow the instructions on Windows in the Computer Lab, but please find below how to access the boxes from Mac or Linux as well when working with the instances remotely.

  1. Create (or import) an SSH key in AWS: https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#KeyPairs:sort=keyName

  2. Get an SSH client:

    • Windows -- Download and install PuTTY: https://www.putty.org

    • Mac -- Install PuTTY for Mac using homebrew or macports

        sudo brew install putty
        sudo port install putty
      
    • Linux -- probably the OpenSSH client is already installed, but to use the same tools on all operating systems, please install and use PuTTY on Linux too, eg on Ubuntu:

        sudo apt install putty
      
  3. Convert the generated pem key to PuTTY format

  4. Make sure the key is readable only by your Windows/Linux/Mac user, eg

     chmod 0400 key.ppk
    

Create and connect to an EC2 box

  1. Create a tiny EC2 instance

    1. Optional: create an Elastic IP for your box
    2. Go the the Instances overview at https://eu-west-1.console.aws.amazon.com/ec2/v2/home?region=eu-west-1#Instances:sort=instanceId
    3. Click "Launch Instance"
    4. Pick the Ubuntu Server 16.04 LTS (HVM), SSD Volume Type AMI
    5. Pick t2.micro instance type (see more instance types)
    6. Click "Review and Launch"
    7. Pick a unique name for the security group
    8. Click "Launch"
  2. Connect to the box

    1. Specify the hostname or IP address

    1. Specify the key for authentication

    1. Set the username to ubuntu on the Connection/Data tab
    2. Save the Session profile
    3. Click the "Open" button

Install RStudio Server on EC2

  1. Look at the docs: https://www.rstudio.com/products/rstudio/download-server

  2. Download Ubuntu apt package list

     sudo apt update
    
  3. Install dependencies

     sudo apt install r-base gdebi-core
    
  4. Try R

     R
    
  5. Install RStudio Server

     wget https://download2.rstudio.org/rstudio-server-1.1.423-amd64.deb
     sudo gdebi rstudio-server-1.1.423-amd64.deb
    
  6. Check process and open ports

     sudo ps aux| grep rstudio
     sudo rstudio-server status
     sudo systemctl status rstudio-server
     sudo netstat -tapen|grep LIST
    
  7. Look at the docs: http://docs.rstudio.com/ide/server-pro/

Connect to the RStudio Server

  1. Confirm that the service is up and running and the port is open

     ubuntu@ip-172-31-12-150:~$ sudo netstat -tapen|grep LIST
     tcp        0      0 0.0.0.0:8787            0.0.0.0:*               LISTEN      0          49065       23587/rserver
     tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN      0          15671       1305/sshd
     tcp6       0      0 :::22                   :::*                    LISTEN      0          15673       1305/sshd
    
  2. Try to connect to the host from a browser on port 8787, eg http://foobar.eu-west-1.compute.amazonaws.com:8787

  3. Realize it's not working

  4. Open up port 8787 in the security group

  5. Authentication: http://docs.rstudio.com/ide/server-pro/authenticating-users.html

  6. Create a new user:

     sudo adduser ceu
    
  7. Login & quick demo:

     1+2
     plot(mtcars)
     install.packages('beanplot')
     system('whoami')
    
  8. Reload webpage (F5)

  9. Demo the terminal:

     $ sudo whoami
     ceu is not in the sudoers file.  This incident will be reported.
    
  10. Grant sudo access to the new user:

     sudo apt install -y mc
     sudo mc
     sudo mcedit /etc/sudoers
     sudo adduser ceu admin
     man adduser
     man deluser
    

Note 1: might need to relogin Note 2: you might want to add NOPASSWD to the sudoers file:

    ceu ALL=(ALL) NOPASSWD:ALL

Although also note (3) the related security risks.

  1. Custom login page: http://docs.rstudio.com/ide/server-pro/authenticating-users.html#customizing-the-sign-in-page
  2. Custom port: http://docs.rstudio.com/ide/server-pro/access-and-security.html#network-port-and-address

Set up an easy to remember domain name

  1. Go to Route 53: https://console.aws.amazon.com/route53/home

  2. Go to Hosted Zones and click on ceudata.net

  3. Create a new Record, where

    • fill in the desired Name (subdomain)
    • paste the public IP address or hostname of your server in the Value field
    • click Create

Play with R for a bit

  1. Installing packages:

     ## don't do this at this point!
     ## install.packages('ggplot2')
    
  2. Use binary packages instead via apt & Launchpad PPA:

     sudo add-apt-repository ppa:marutter/rrutter
     sudo add-apt-repository ppa:marutter/c2d4u
     sudo apt-get update
     sudo apt-get upgrade
     sudo apt-get install r-cran-ggplot2
    
  3. Ready to use it from R after restarting the session:

     library(ggplot2)
     ggplot(mtcars, aes(hp)) + geom_histogram()
    
  4. Get some real-time data and visualize it:

    1. Install devtools in the RStudio/Terminal:

       sudo apt-get install r-cran-devtools r-cran-data.table r-cran-httr r-cran-futile.logger r-cran-jsonlite r-cran-data.table r-cran-snakecase
      
    2. Install an R package from GitHub to interact with crypto exchanges:

       devtools::install_github('daroczig/binancer')
      
    3. First steps with live data:

       library(binancer)
       klines <- binance_klines('BTCUSDT', interval = '1m', limit = 60*3)
       str(klines)
       summary(klines$close)
      
    4. Visualize the data

       ggplot(klines, aes(close_time, close)) + geom_line()
      
    5. Create a candle chart

       library(scales)
       ggplot(klines, aes(open_time)) +
           geom_linerange(aes(ymin = open, ymax = close, color = close < open), size = 2) +
           geom_errorbar(aes(ymin = low, ymax = high), size = 0.25) +
           theme_bw() + theme('legend.position' = 'none') + xlab('') +
           ggtitle(paste('Last Updated:', Sys.time())) +
           scale_y_continuous(labels = dollar) +
           scale_color_manual(values = c('#1a9850', '#d73027')) # RdYlGn
      
    6. Compare prices of 4 currencies in the past 24 hours on 15 mins intervals:

       library(data.table)
       klines <- rbindlist(lapply(
           c('ETHBTC', 'ARKBTC', 'NEOBTC', 'IOTABTC'),
           binance_klines,
           interval = '15m', limit = 4*24))
       ggplot(klines, aes(open_time)) +
           geom_linerange(aes(ymin = open, ymax = close, color = close < open), size = 2) +
           geom_errorbar(aes(ymin = low, ymax = high), size = 0.25) +
           theme_bw() + theme('legend.position' = 'none') + xlab('') +
           ggtitle(paste('Last Updated:', Sys.time())) +
           scale_color_manual(values = c('#1a9850', '#d73027')) +
           facet_wrap(~symbol, scales = 'free', nrow = 2)
      
    7. Some further useful functions:

      • binance_ticker_all_prices()
      • binance_coins_prices()
      • binance_credentials and binance_balances
    8. Create an R script that reports and/or plots on some cryptocurrencies

Schedule R scripts

  1. Install Jenkins from the RStudio/Terminal: https://pkg.jenkins.io/debian-stable/

     wget -q -O - https://pkg.jenkins.io/debian-stable/jenkins.io.key | sudo apt-key add -
     echo "deb https://pkg.jenkins.io/debian-stable binary/" | sudo tee -a /etc/apt/sources.list
     sudo apt update
     sudo apt install jenkins ## installs Java as well
     sudo netstat -tapen | grep java
    
  2. Open up port 8080 in the related security group

  3. Access Jenkins from your browser and finish installation

    1. Read the initial admin password from RStudio/Terminal via

       sudo cat /var/lib/jenkins/secrets/initialAdminPassword
      
    2. Proceed with installing the suggested plugins

    3. Create your first user (eg ceu)

  4. Create a new job:

    1. Enter the name of the job: get current Bitcoin price

    2. Pick "Freestyle project"

    3. Click "OK"

    4. Add a new "Execute shell" build step

    5. Enter the below command to look up the most recent BTC price

       R -e "library(binancer);binance_coins_prices()[symbol == 'BTC', usd]"
      
    6. Run the job

  5. Install R packages system wide from RStudio/Terminal (more on this later):

     sudo Rscript -e "library(devtools);with_libpaths(new = '/usr/local/lib/R/site-library', install_github('daroczig/binancer'))"
    
  6. Rerun the job

ScheduleR improvements

  1. Create an R script and run with Rscript instead of R -- eg with the below content

     library(binancer)
     prices <- binance_coins_prices()
     library(futile.logger)
     flog.info('The current Bitcoin price is: %s', [symbol == 'BTC', usd])
    
  2. Learn about little R: https://github.com/eddelbuettel/littler

  3. Set up e-mail notifications via SNS: https://eu-west-1.console.aws.amazon.com/ses/home?region=eu-west-1#

    1. Whitelist and confirm your e-mail address at https://eu-west-1.console.aws.amazon.com/ses/home?region=eu-west-1#verified-senders-email:

    2. Take a note on the SMTP settings:

      • Server: email-smtp.eu-west-1.amazonaws.com
      • Port: 587
      • TLS: Yes
    3. Create SMTP credentials and note the username and password

    4. Configure Jenkins at http://SERVERNAME.ceudata.net:8080/configure

      1. Set up the default FROM e-mail address: jenkins@ceudata.net

      2. Search for "Extended E-mail Notification" and configure

        • SMTP Server
        • Click "Advanced"
        • Check "Use SMTP Authentication"
        • Enter User Name from the above steps from SNS
        • Enter Password from the above steps from SNS
        • Check "Use SSL"
        • SMTP port: 587
    5. Set up "Post-build Actions" in Jenkins: Editable Email Notification - read the manual and info popups, configure to get an e-mail on job failures and fixes

Job Scheduler exercises

  • Configure your first job to alert if Bitcoin price is below $10K or higher than $12K
  • Create a Jenkins job running hourly to generate a candlestick chart on the price of BTC and ETH
  • Create an alert if BTC or ETH price changed more than 5% in the past 24 hours

First steps with interactive R-driven apps: Shiny

  1. Install Shiny

     sudo apt-get install r-cran-shiny r-cran-rmarkdown
    
  2. Refresh what we have learnedbriefly covered in the DA1 class: https://github.com/daroczig/CEU-R-lab#week-6-100-min-introduction-to-r-markdown-and-shiny

  3. Create a new "Shiny Web Application" file

  4. Pick a name for the App and the "Single File" option

  5. Copy/paste the content of our demo app from https://github.com/daroczig/CEU-R-lab/blob/2018/6.R

  6. Click on the "Run app" button

  7. Disable the popup blocker in the right corner of the navigation bar

  8. Retry running the app and enjoy :)

Shiny exercises

  1. Create a minimal dashboard showing the ETH prices in the past 24 hours
  2. Add a dropdown input field to the sidebar to let users change the interval of the plot (eg 1 min, 15 mins, 1 hour etc) -- read the binance_klines docs
  3. Add a dropdown input field to the sidebar to let users pick the symbol (eg ETH or BTC)
  4. Make the plot interactive eg with http://jkunst.com/highcharter

See the shiny/highcharter subfolder for a possible solution if you get stuck.

Shiny Server

  1. Install the highcharter package as a system user:

     sudo apt-get install r-cran-dplyr r-cran-quantmod r-cran-xml r-cran-tidyr r-cran-igraph r-cran-lubridate r-cran-psych r-cran-broom r-cran-yaml r-cran-htmlwidgets
     sudo R -e "devtools::with_libpaths(new = '/usr/local/lib/R/site-library', install.packages('highcharter', repos='https://cran.rstudio.com/'))"
    
  2. Install Shiny Server:

     wget https://download3.rstudio.org/ubuntu-12.04/x86_64/shiny-server-1.5.6.875-amd64.deb
     sudo gdebi shiny-server-1.5.6.875-amd64.deb
    
  3. Edit site_dir in shiny-server.conf:

     sudo mcedit /etc/shiny-server/shiny-server.conf
     sudo systemctl restart shiny-server
    
  4. Visit Shiny Server on port 3838 from your browser

  5. Always keep logs -- set this in the Shiny Server config & restart service:

     preserve_logs true;
    
  6. Debug logs

     ls -la /var/log/shiny-server
    

Further exercises

If in doubt

Kill your current box and start a new one using the data-infra-in-prod-R-image AMI that already bundles all above steps:

Week 4: Use Cases on Using R in the Cloud

Quiz: no quiz today -- but please consider spending the related time later to fill in the QA questionnaire on this class

Reminder: what is

  • RStudio Server
  • Shiny Server
  • Jenkins

Stream processing with R

Background: slides

Create a central RStudio server

We will use one decent sized node today instead of many tiny instances: t2.xlarge with 4 vCPU and 16 gigs of RAM

Use our custom Amazon AMI: data-infra-in-prod-R-image

Already installed software:

  • RStudio Server
  • Shiny Server
  • Jenkins

Configured users: ceu

Notes: the sudo commands are to be run on only one computer as those updates will take effect globally, so

  • run all steps if you are configuring the server
  • run only the steps in R / you were asked to run if you are a regular user

Create a user for every member of the team

We'll export the list of IAM users from AWS and create a system user for everyone.

  1. Attach a newly created IAM EC2 Role (let's call it ceudataserver) to the EC2 box and assign 'Read-only IAM access':

  2. Install AWS CLI tool:

    sudo apt install awscli
    
  3. List all the IAM users: https://docs.aws.amazon.com/cli/latest/reference/iam/list-users.html

    aws iam list-users
    
  4. Export the list of users from R:

    library(jsonlite)
    users <- fromJSON(system('aws iam list-users', intern = TRUE))
    str(users)
    users[[1]]$UserName
    
  5. Create a new system user on the box (for RStudio Server access) for every IAM user:

    library(futile.logger)
    for (user in users[[1]]$UserName) {
      flog.info(sprintf('Creating %s', user))
      system(sprintf("sudo adduser --disabled-password --quiet --gecos '' %s", user))
      flog.info(sprintf('Setting password for %s', user))
      system(sprintf("echo '%s:secretpass' | sudo chpasswd", user)) ## note the single quotes + sudo
    }
    

Note, you may have to temporarily enable passwordless sudo for this user :/

ceu ALL=(ALL) NOPASSWD:ALL

Check users:

readLines('/etc/passwd')

Storing credentials and other secrets in a secure way in the cloud

Using Amazon's KMS: https://aws.amazon.com/kms

  1. Go to IAM's Encryption Keys: https://console.aws.amazon.com/iam/home?region=eu-west-1#/encryptionKeys/us-east-1

  2. Create a new key: ceudata

  3. Optionally allow user access to the key

  4. Allow the ceudataserver IAM role to use the key

  5. Install rJava:

    sudo apt install r-cran-rjava
    
  6. Install the AWR.KMS package globally:

    sudo R -e "devtools::with_libpaths(new = '/usr/local/lib/R/site-library', install.packages('AWR.KMS', repos='https://cran.rstudio.com/'))"
    
  7. First steps with securing sensitive information

    library(AWR.KMS)
    secret <- kms_encrypt('foobar', key = 'alias/ceudata')
    secret
    kms_decrypt(secret)

Recap on redis

  1. Install server

    sudo apt install redis-server
    netstat -tapen|grep LIST
    
  2. Install client

    sudo apt install r-cran-rredis
    
  3. Interact from R

    library(rredis)
    redisConnect()
    redisSet('foo', 'bar')
    redisGet('foo')
    redisIncr('counter')
    redisIncr('counter')
    redisIncr('counter')
    redisGet('counter')
    redisDecr('counter')
    redisDecr('counter2')
    redisMGet(c('counter', 'counter2'))

Set up a stream

  1. Go to AWS Console: https://eu-west-1.console.aws.amazon.com/kinesis/home?region=eu-west-1#/streams/list
  2. Start writing data to the stream: http://ceu.datapao.com

Read some data from the Kinesis stream

  1. Allow Kinesis read-only access to the ceudataserver IAM role

  2. Install the R client

    sudo R -e "library(devtools);with_libpaths(new = '/usr/local/lib/R/site-library', install_github('daroczig/AWR.Kinesis'))"
    
  3. Get a sample from the stream

    library(AWR.Kinesis)
    records <- kinesis_get_records('ceudata', 'eu-west-1')
    
    library(jsonlite)
    records <- stream_in(textConnection(records))
  4. Some quick counts

    library(data.table)
    records <- data.table(records)
    records[, .N, by = country]

Write an R function to increment counters on new transactions

  1. Get sample raw data as per above

    records <- kinesis_get_records('ceudata', 'eu-west-1')
  2. Function to parse and process it

    txprocessor <- function(record) {
      country <- fromJSON(record)$country
      flog.debug(paste('Found 1 transaction going to', country))
      redisIncr(sprintf('countrycode:%s', country))
    }
  3. Iterate on all records

    library(futile.logger)
    library(rredis)
    redisConnect()
    for (record in records) {
      txprocessor(record)
    }
  4. Check counters

    countries <- redisMGet(redisKeys('countrycode:*'))
    countries <- data.frame(
      country = sub('^countrycode:', '', names(countries)),
      N = as.numeric(countries))
  5. Visualize

    library(ggplot2)
    ggplot(countries, aes(country, N)) + geom_bar(stat = 'identity')

Create consumer processing the records from the stream

  1. Create a new folder for the Kinesis consumer files: streamer

  2. Create an app.properties file within that subfolder

executableName = ./app.R
regionName = eu-west-1
streamName = ceudata
applicationName = demo_app
AWSCredentialsProvider = DefaultAWSCredentialsProviderChain
  1. Create the app.R file:
#!/usr/bin/Rscript
library(futile.logger)
library(AWR.Kinesis)
library(jsonlite)

kinesis_consumer(

    initialize = function() {
        flog.info('Hello')
        library(rredis)
        redisConnect(nodelay = FALSE)
        flog.info('Connected to Redis')
    },

    processRecords = function(records) {
        flog.info(paste('Received', nrow(records), 'records from Kinesis'))
        for (record in records$data) {
            country <- fromJSON(record)$country
            flog.debug(paste('Found 1 transaction going to', country))
            redisIncr(sprintf('countrycode:%s', country))
        }
    },

    updater = list(
        list(1/6, function() {
            flog.info('Checking overall counters')
            countries <- redisMGet(redisKeys('countrycode:*'))
            flog.info(paste(sum(as.numeric(countries)), 'records processed so far'))
    })),

    shutdown = function()
        flog.info('Bye'),

    checkpointing = 1,
    logfile = 'app.log')
  1. Allow writing checkpointing data to DynamoDB and CloudWatch in IAM

  2. Convert the above R script into an executable

chmod +x app.R

Run the app:

/usr/bin/java -cp /usr/local/lib/R/site-library/AWR/java/*:/usr/local/lib/R/site-library/AWR.Kinesis/java/*:./ \
    com.amazonaws.services.kinesis.multilang.MultiLangDaemon \
    ./app.properties

Run a Shiny app showing the progress

  1. Reset counters

    library(rredis)
    redisConnect()
    keys <- redisKeys('country*')
    redisDelete(keys)
  2. Install the treemap package

    sudo R -e "devtools::with_libpaths(new = '/usr/local/lib/R/site-library', install.packages('treemap', repos='https://cran.rstudio.com/'))"
    
  3. Run the below Shiny app

## packages for plotting
library(treemap)
library(highcharter)

## connect to Redis
library(rredis)
redisConnect()

library(shiny)
library(data.table)
ui     <- shinyUI(highchartOutput('treemap', height = '800px'))
server <- shinyServer(function(input, output, session) {

    countries <- reactive({
    
        ## auto-update every 2 seconds
        reactiveTimer(2000)()
        
        ## get frequencies
        countries <- redisMGet(redisKeys('countrycode:*'))
        countries <- data.table(
          country = sub('^countrycode:', '', names(countries)),
          N = as.numeric(countries))

        ## color top 3
        countries[, color := 1]
        countries[country %in% countries[order(-N)][1:3, country],
            color := 2]
        
        ## return
        countries
    })

    output$treemap <- renderHighchart({
        tm <- treemap(countries(), index = c('country'),
                      vSize = 'N', vColor = 'color',
                      type = 'value', draw = FALSE)
        N <- sum(countries()$N)
        hc_title(hctreemap(tm, animation = FALSE),
                 text = sprintf('Transactions (N=%s)', N))
    })

})
shinyApp(ui = ui, server = server, options = list(port = 8080))

Create local Docker image

  1. Install Docker
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
sudo apt-get update
sudo apt install docker-ce
  1. Create a Dockerfile describing your Docker image based on https://github.com/cardcorp/card-rocker/blob/master/r-kinesis/Dockerfile
FROM cardcorp/r-kinesis:latest
MAINTAINER Gergely Daroczi <daroczig@rapporter.net>

## Install R package to interact with Redis
RUN install2.r --error rredis && rm -rf /tmp/downloaded_packages/ /tmp/*.rds

## Add consumer
ADD app.properties /
ADD app.R /
  1. Build the Docker image via the above Dockerfile
sudo docker build -t ceudata .
sudo docker images
  1. Run it
sudo docker run --rm -ti ceudata /app.properties
  1. Problem: cannot access Redis on localhost -> remote DB access & using credentials

ECR & ECS

  1. Update Redist config to require auth and to become accessible on the network interfaces

    sudo mcedit /etc/redis/redis.conf
    ## bind
    ## AUTH
    sudo systemctl restart redis
    sudo netstat -tapen | grep LIST
    
  2. Open up the port in the Security Group (default port on 6379)

  3. Try connecting from a remote machine, eg

    redisConnect('127.0.0.1', password = 'ceudata')
  4. Update the above R script to use the IP and password (via KMS) and restart the Docker container for a local test

  5. Update IAM role to be able to push to ECR

  6. docker push

  7. Set up ECS task definition and service etc as per slides

Scheduling Jenkins jobs

Configure Jenkins to recognize the newly created Linux system users

  1. Go to Manage Jenkins

  2. Go to Configure Global Security

  3. Enable "Unix user/group database" in the Security Realm

  4. Add jenkins to the shadow group so that it can read the pass hashes

    sudo adduser jenkins shadow
    
  5. Restart Jenkins

    sudo systemctl jenkins restart
    

Set up a Slack bot

  1. A custom Slack app is already created at https://api.slack.com/apps/A9FBHCLPR, but feel free to create a new one and use the related app in the following steps

  2. Look up the app's bots in the sidebar

  3. Look up the OAuth Access Token and encrypt via KMS

    library(AWR.KMS)
    kms_encrypt('token', key = 'alias/ceudata')
  4. Install the Slack R client

    sudo R -e "devtools::with_libpaths(new = '/usr/local/lib/R/site-library', install.packages('slackr', repos='https://cran.rstudio.com/'))"
    
  5. Init and send our first messages with slackr

    library(AWR.KMS)
    token <- kms_decrypt('ciphertext')
    library(slackr)
    slackr_setup(username = 'ceudatabot', api_token = token, icon_emoji = ':r:')
    text_slackr(text = 'Hi there!', channel = '#bots')
  6. A more complex message

    library(binancer)
    prices <- binance_coins_prices()
    msg <- sprintf(':money_with_wings: The current Bitcoin price is: $%s', prices[symbol == 'BTC', usd])
    text_slackr(text = msg, preformatted = FALSE, channel = '#bots')
  7. Or plot

    klines <- binance_klines('BTCUSDT', interval = '1m', limit = 60*3)
    p <- ggplot(klines, aes(close_time, close)) + geom_line()
    ggslackr(plot = p, channels = '#bots', width = 12)

Exercise: Create a Jenkins job

  • Pick a coin from binance_coins_prices()
  • Write an R script in RStudio looking up the most recent price or prices, do some analysis or simple reporting on it
  • Create a Jenkins job to run it every minute -- using your username as a prefix for all newly created jobs so that we can easily identify your jobs
  • Let's create a view for every user
  • Note that all jobs are running as the jenkins user
  • If you get stuck, look up notes from last week
  • What happens if the job fails? Create an alert with the failure message!

Example code:

library(binancer)
prices <- binance_coins_prices()
msg <- sprintf(':money_with_wings: The current Bitcoin price is: $%s', prices[symbol == 'BTC', usd])

library(AWR.KMS)
token <- kms_decrypt("***")

library(slackr)
slackr_setup(username = 'ceudatabot', api_token = token, icon_emoji = ':r:')
text_slackr(text = msg, preformatted = FALSE, channel = '#bots')

Exercise: Create another Jenkins job

  1. Get a sample from the Kinesis strem
  2. Sum up the amounts
  3. Report in the #bots channel

Exercise: Dockerize the Jenkins job

  • Enable Docker usage for jenkins

    sudo adduser jenkins docker
    sudo systemctl jenkins restart
    
  • Create a Dockerfile including R package installations

  • Build the Docker image

  • Update the Jenkins job to call docker run instead of directly Rscript

Scaling Shiny with Shinyproxy.io and Docker images

  • Dockerize the Shiny app (including updates to the Redis connection)
  • Install ShinyProxy from shinyproxy.io
  • Look at the config at https://www.shinyproxy.io/configuration
  • Deploy on localhost or ECS

Feedback

As you may know, we are continuously trying to improve the content of this class and looking forward to any feedback and suggestions: https://gdaroczi.typeform.com/to/OXxs1y