/gemma_pytorch

The official PyTorch implementation of Google's Gemma models

Primary LanguagePythonApache License 2.0Apache-2.0

Gemma in PyTorch

Gemma is a family of lightweight, state-of-the art open models built from research and technology used to create Google Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. For more details, please check out the following links:

This is the official PyTorch implementation of Gemma models. We provide model and inference implementations using both PyTorch and PyTorch/XLA, and support running inference on CPU, GPU and TPU.

Download Gemma model checkpoint

You can find the model checkpoints on Kaggle here.

Alternatively, you can find the model checkpoints on the Hugging Face Hub here. To download the models, go the the model repository of the model of interest and click the Files and versions tab, and download the model and tokenizer files. For programmatic downloading, if you have huggingface_hub installed, you can also run:

huggingface-cli download google/gemma-7b-it-pytorch

Note that you can choose between the 2B, 7B, 7B int8 quantized variants.

VARIANT=<2b or 7b>
CKPT_PATH=<Insert ckpt path here>

Try it free on Colab

Follow the steps at https://ai.google.dev/gemma/docs/pytorch_gemma.

Try it out with PyTorch

Prerequisite: make sure you have setup docker permission properly as a non-root user.

sudo usermod -aG docker $USER
newgrp docker

Build the docker image.

DOCKER_URI=gemma:${USER}

docker build -f docker/Dockerfile ./ -t ${DOCKER_URI}

Run Gemma inference on CPU.

PROMPT="The meaning of life is"

docker run -t --rm \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run.py \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}" \
    --prompt="${PROMPT}"
    # add `--quant` for the int8 quantized model.

Run Gemma inference on GPU.

PROMPT="The meaning of life is"

docker run -t --rm \
    --gpus all \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run.py \
    --device=cuda \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}" \
    --prompt="${PROMPT}"
    # add `--quant` for the int8 quantized model.

Try It out with PyTorch/XLA

Build the docker image (CPU, TPU).

DOCKER_URI=gemma_xla:${USER}

docker build -f docker/xla.Dockerfile ./ -t ${DOCKER_URI}

Build the docker image (GPU).

DOCKER_URI=gemma_xla_gpu:${USER}

docker build -f docker/xla_gpu.Dockerfile ./ -t ${DOCKER_URI}

Run Gemma inference on CPU.

docker run -t --rm \
    --shm-size 4gb \
    -e PJRT_DEVICE=CPU \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run_xla.py \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}" \
    # add `--quant` for the int8 quantized model.

Run Gemma inference on TPU.

Note: be sure to use the docker container built from xla.Dockerfile.

docker run -t --rm \
    --shm-size 4gb \
    -e PJRT_DEVICE=TPU \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run_xla.py \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}" \
    # add `--quant` for the int8 quantized model.

Run Gemma inference on GPU.

Note: be sure to use the docker container built from xla_gpu.Dockerfile.

docker run -t --rm --privileged \
    --shm-size=16g --net=host --gpus all \
    -e USE_CUDA=1 \
    -e PJRT_DEVICE=CUDA \
    -v ${CKPT_PATH}:/tmp/ckpt \
    ${DOCKER_URI} \
    python scripts/run_xla.py \
    --ckpt=/tmp/ckpt \
    --variant="${VARIANT}" \
    # add `--quant` for the int8 quantized model.

Tokenizer Notes

99 unused tokens are reserved in the pretrained tokenizer model to assist with more efficient training/fine-tuning. Unused tokens are in the string format of <unused[0-98]> with token id range of [7-105].

"<unused0>": 7,
"<unused1>": 8,
"<unused2>": 9,
...
"<unused98>": 105,

Disclaimer

This is not an officially supported Google product.