/nuro

Library for usage different neuron networks and combine them.

Primary LanguageTypeScript

nuro

Library for usage different neuron networks and combine them.

Classes

Kohonen

May be used for build Kohonen's neuron layer. Accepts any numeric values. Public methods:

  • setData
const kohonen = new Kohonen();

kohonen.setData([
  [ new BigNumber(2), new BigNumber(5), ... ],
  [ new BigNumber(8), new BigNumber(3), ... ],
  ...
]);
  • learn
const kohonen = new Kohonen();

kohonen.setData([
  [ new BigNumber(2), new BigNumber(5), ... ],
  [ new BigNumber(8), new BigNumber(3), ... ],
  ...
]);

kohonen.iterations = new BigNumber(1);
kohonen.range = new BigNumber(.5);

// here you can get clusters which was created by learning
// clusters === kohonen.clusters;
const clusters = kohonen.learn();
  • clusterify
const kohonen = new Kohonen();

kohonen.setData([
  [ new BigNumber(2), new BigNumber(5), ... ],
  [ new BigNumber(8), new BigNumber(3), ... ],
  ...
]);

kohonen.iterations = new BigNumber(1);
kohonen.range = new BigNumber(.5);

kohonen.learn();

const dataToClusterify: BigNumber[] = [ new BigNumber(5), new BigNumber(6), ... ];

const cluster = kohonen.clusterify(dataToClusterify);
  • setClusterStructure
const kohonen = new Kohonen();

kohonen.setData(bigNumberData);

const clusters: BigNumber[][] = [
  [ new BigNumber(2), new BigNumber(5), ... ],
  [ new BigNumber(8), new BigNumber(3), ... ],
  ...
];
kohonen.setClusterStructure(clusters);

const dataToClusterify: BigNumber[] = [ new BigNumber(2), new BigNumber(5), ... ];

const cluster = kohonen.clusterify(dataToClusterify);
  • getDenormalizedClusters
const kohonen = new Kohonen();

kohonen.setData(bigNumberData);

const inputClusters = [
  [ new BigNumber(32), new BigNumber(5200), ... ],
  [ new BigNumber(20), new BigNumber(1000), ... ],
  ...
];
kohonen.setClusterStructure(clusters);

let denormalizedClusters = kohonen.getDenormalizedClusters();

// NOTICE: denormalizedClusters !== kohonen.clusters;
expect(denormalizedClusters).toEqual(inputClusters);

BinaryAdaptiveResonance

May be used for analysis binary data by ART-1 method (with long/short memory). Allows only binary data: 1 || 0. Public methods:

  • learn
const bar = new BinaryAdaptiveResonance();

bar.speed = new BigNumber(.5);
bar.range = new BigNumber(.8);

const data: BigNumber[][] = [
  [new BigNumber(0), new BigNumber(1)],
  [new BigNumber(1), new BigNumber(0)],
  ...
];

// clusters which was prepared on last `learn` call
const clusters: BigNumber[][] = bar.learn(data);

...

// clusters which were prepared on all `learn` calls
bar.clusters;
  • clusterify
const bar = new AnalogAdaptiveResonance();
bar.speed = new BigNumber(.5);
bar.range = new BigNumber(.8);

const data: BigNumber[][] = [
  [new BigNumber(1), new BigNumber(0), ...],
  [new BigNumber(1), new BigNumber(1), ...]
];

bar.learn(data);

// cluster === bar.clusters[1]
const cluster = bar.clusterify(
  [new BigNumber(0), new BigNumber(1), ...]
);
  • getClosestCluster
const bar = new AnalogAdaptiveResonance();
bar.speed = new BigNumber(.5);
bar.range = new BigNumber(.8);

const data: BigNumber[][]= [
  [new BigNumber(1), new BigNumber(0), ...],
  [new BigNumber(0), new BigNumber(0), ...],
  ...
];

bar.learn(data);

const cluster = bar.getClosestCluster(
  [new BigNumber(0), new BigNumber(1), ...]
);

AnalogAdaptiveResonance

May be used for analysis data by ART-2 method. Accepts any numeric values. Public methods:

  • learn
const aar = new AnalogAdaptiveResonance();

aar.speed = new BigNumber(.5);
aar.range = new BigNumber(.8);

const data: BigNumber[][] = [
  [ new BigNumber(200), new BigNumber(500), ... ],
  [ new BigNumber(800), new BigNumber(300), ... ],
  ...
];

// clusters which was prepared on last `learn` call
const clusters: BigNumber[][] = aar.learn(data);

...

// clusters which were prepared on all `learn` calls
aar.clusters;
  • clusterify
const aar = new AnalogAdaptiveResonance();
aar.speed = new BigNumber(.5);
aar.range = new BigNumber(.8);

const data: BigNumber[][] = [
  [ new BigNumber(2), new BigNumber(5), ... ],
  [ new BigNumber(8), new BigNumber(3), ... ],
  ...
];

aar.learn(data);

// cluster === aar.clusters[1]
const cluster = aar.clusterify(
  [ new BigNumber(9), new BigNumber(3), ... ]
);
  • getClosestCluster
const aar = new AnalogAdaptiveResonance();
aar.speed = new BigNumber(.5);
aar.range = new BigNumber(.8);

const data: BigNumber[][] = [
  [ new BigNumber(2), new BigNumber(5), ... ],
  [ new BigNumber(8), new BigNumber(3), ... ],
  ...
];

aar.learn(data);

const cluster = aar.getClosestCluster(
  [ new BigNumber(9), new BigNumber(3), ... ]
);

// probably `anotherOne` will be equal `null`
const anotherOne = aar.getClosestCluster(
  [ new BigNumber(999), new BigNumber(321), ... ]
);

For more info you may look into tests.

Tests

npm test