MOCA: A Modular Object-Centric Approach for Interactive Instruction Following
Kunal Pratap Singh* ,
Suvaansh Bhambri* ,
Byeonghwi Kim* ,
Roozbeh Mottaghi ,
Jonghyun Choi
MOCA (Modular Object-Centric Approach) is a modular architecture that decouples a task into visual perception and action policy. The action policy module (APM) is responsible for sequential action prediction, whereas the visual perception module (VPM) generates pixel-wise interaction mask for the objects of interest for manipulation. MOCA addresses long-horizon instruction following tasks based on egocentric RGB observations and natural language instructions on the ALFRED benchmark.
$ git clone https://github.com/gistvision/moca.git moca
$ export ALFRED_ROOT=$(pwd)/moca
$ virtualenv -p $(which python3) --system-site-packages moca_env
$ source moca_env/bin/activate
$ cd $ALFRED_ROOT
$ pip install --upgrade pip
$ pip install -r requirements.txt
Dataset includes visual features extracted by ResNet-18 with natural language annotations (~135.5GB after unzipping).
Download the dataset here, put it in data
, and unzip it by following the commands below.
For details of the ALFRED dataset, see the repository of ALFRED.
$ cd $ALFRED_ROOT/data
$ ls
json_feat_2.1.0.7z ...
$ 7z x json_feat_2.1.0.7z -y && rm json_feat_2.1.0.7z
$ ls
json_feat_2.1.0 ...
$ ls json_feat_2.1.0
look_at_obj_in_light-AlarmClock-None-DeskLamp-301
look_at_obj_in_light-AlarmClock-None-DeskLamp-302
look_at_obj_in_light-AlarmClock-None-DeskLamp-303
look_at_obj_in_light-AlarmClock-None-DeskLamp-304
...
Note: The downloaded data includes expert trajectories with both original and color-swapped frames' features.
We provide our pretrained weight used for the experiments in the paper and the leaderboard submission. To download the pretrained weight of MOCA, use the command below.
$ cd $ALFRED_ROOT
$ sh download_model.sh
To train MOCA, run train_seq2seq.py
with hyper-parameters below.
python models/train/train_seq2seq.py --data <path_to_dataset> --model seq2seq_im_mask --dout <path_to_save_weight> --splits data/splits/oct21.json --gpu --batch <batch_size> --pm_aux_loss_wt <pm_aux_loss_wt_coeff> --subgoal_aux_loss_wt <subgoal_aux_loss_wt_coeff> --preprocess
Note: As mentioned in the repository of ALFRED, run with --preprocess
only once for preprocessed json files.
Note: All hyperparameters used for the experiments in the paper are set as default.
For example, if you want train MOCA and save the weights for all epochs in "exp/moca" with all hyperparameters used in the experiments in the paper, you may use the command below.
python models/train/train_seq2seq.py --dout exp/moca --gpu --save_every_epoch
Note: The option, --save_every_epoch
, saves weights for all epochs and therefore could take a lot of space.
To evaluate MOCA, run eval_seq2seq.py
with hyper-parameters below.
To evaluate a model in the seen
or unseen
environment, pass valid_seen
or valid_unseen
to --eval_split
.
python models/eval/eval_seq2seq.py --data <path_to_dataset> --model models.model.seq2seq_im_mask --model_path <path_to_weight> --eval_split <eval_split> --gpu --num_threads <thread_num>
Note: All hyperparameters used for the experiments in the paper are set as default.
If you want to evaluate our pretrained model saved in exp/pretrained/pretrained.pth
in the seen
validation, you may use the command below.
python models/eval/eval_seq2seq.py --model_path "exp/pretrained/pretrained.pth" --eval_split valid_seen --gpu --num_threads 4
To evaluate MOCA for subgoals, run eval_seq2seq.py
with with the option --subgoals <subgoals>
.
The option takes all
for all subgoals and GotoLocation
, PickupObject
, PutObject
, CoolObject
, HeatObject
, CleanObject
, SliceObject
, and ToggleObject
for each subgoal.
The option can take multiple subgoals.
For more details, refer to ALFRED.
python models/eval/eval_seq2seq.py --data <path_to_dataset> --model models.model.seq2seq_im_mask --model_path <path_to_weight> --eval_split <eval_split> --gpu --num_threads <thread_num> --subgoals <subgoals>
Note: All hyperparameters used for the experiments in the paper are set as default.
If you want to evaluate our pretrained model saved in exp/pretrained/pretrained.pth
in the seen
validation for all subgoals, you may use the command below.
python models/eval/eval_seq2seq.py --model_path "exp/pretrained/pretrained.pth" --eval_split valid_seen --gpu --num_threads 4 --subgoals all
Model | Seen SR(%) | Seen GC (%) | Unseen SR (%) | Unseen GC (%) |
---|---|---|---|---|
Reported | 19.15 (13.60) | 28.50 (22.30) | 3.78 (2.00) | 13.40 (8.30) |
Reproduced | 18.66~19.27 (12.78~13.63) | 27.79~28.64 (21.50~22.14) | 3.65~3.78 (1.94~1.99) | 13.40~13.77 (8.22~8.69) |
Note: "Reproduced" denotes the expected success rates of the pretrained model that we provide.
Trained and Tested on:
- GPU - GTX 2080 Ti (11GB)
- CPU - Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz
- RAM - 32GB
- OS - Ubuntu 18.04
MIT License
@article{singh2020moca,
title={MOCA: A Modular Object-Centric Approach for Interactive Instruction Following},
author={Singh, Kunal Pratap and Bhambri, Suvaansh and Kim, Byeonghwi and Mottaghi, Roozbeh and Choi, Jonghyun},
journal={arXiv preprint arXiv:2012.03208},
year={2020}
}