Official Pytorch implementation of AMAES from the paper
AMAES: Augmented Masked Autoencoder Pretraining on Public Brain MRI Data for 3D-Native Segmentation
ADSMI @ MICCAI 2024
Asbjørn Munk*, Jakob Ambsdorf*, Sebastian Llambias, Mads NielsenPioneer Centre for AI & University of Copenhagen
* Equal Contribution
Efficient pretraining for 3D segmentation models using MAE and augmentation reversal on a large domain-specific dataset.
For more information on the paper see amaes.asbn.dk.
All models are pretrained on 🧠BRAINS-45K, the largest pretraining dataset available for brain MRI.
All code necesarry to reproduce the dataset will be made available as soon as possible.
All checkpoints have been pretrained on 🧠BRAINS-45K for 100 epochs using AMAES.
Model | Parameters | Checkpoint | ||
---|---|---|---|---|
M | Zenodo | 🤗 | Kaggle | |
U-Net XL | 90 | Download | ||
U-Net B | 22 | Download | ||
MedNeXt-L | 55 | Download | ||
MedNeXt-M | 21 | Download |
All models were pretrained on 2xH100 GPUs with 80GB of memory.
- Install Poetry.
- Create environment by calling
poetry install
.
AMAES is using the Yucca library for handling 3D medical data.
Guide on how to setup data comming soon.
To pretrain using AMAES run
poetry run src/pretrain.py --base_path=<path to base data directory>
To finetune using AMAES, run
poetry run src/train.py --base_path=<path to base data directory> --pretrained_weights_path="<path_to_checkpoint>" --model=<model_to_instantiate>
Note that the checkpoint must match the model provided. For instance, to finetune unet_xl_lw_dec_fullaug.pth
use --model=unet_xl
.
Please use
@article{munk2024amaes,
title={AMAES: Augmented Masked Autoencoder Pretraining on Public Brain MRI Data for 3D-Native Segmentation},
author={Munk, Asbjørn and Ambsdorf, Jakob and Llambias, Sebastian and Nielsen, Mads},
journal={arXiv preprint arXiv:2408.00640},
year={2024}
}