% % % % % % CODE FOR "In silico learning of tumor evolution through mutational time series" 
% % % % % % by Noam Auslander, Yuri I. Wolf, Eugene V. Koonin





% % % % % % System requirements: 
%%% 1. MATLAB has to be installed. 
%%% 2. The following packages should be installed:
%%  a. Deep Learning Toolbox
%%  b. Statistics and Machine Learning Toolbox

%%% Version checked on: MATLAB2018a,MATLAB2018b
%%% OS tested: mac OS 10.12.6 and 10.10.5, NIH HPC linux cluster



% % % % % % This code has four parts 

% % % 1. PART1_PREDICT_LOAD - predict mutational load from a time series of mutations


% % % 2. PART2_PREDICT_SEQ - predict the next mutation in the time-sequence


% % % 3. PART3_CONSTRUCT_DATA - construction of simulated mutational data


% % % 4. PART4_PREDICT_INTERACTIONS - predicting occurrence of mutations from 
% the binary sequence of major drivers, validation of interactions and
% survival analysis



% % % each part contains a separate, detailed README file % % %