OrdinaryDiffEq.jl
OrdinaryDiffEq.jl is a component package in the DifferentialEquations ecosystem. It holds the ordinary differential equation solvers and utilities. While completely independent and usable on its own, users interested in using this functionality should check out DifferentialEquations.jl.
API
OrdinaryDiffEq.jl is part of the JuliaDiffEq common interface, but can be used independently of DifferentialEquations.jl. The only requirement is that the user passes an OrdinaryDiffEq.jl algorithm to solve
. For example, we can solve the ODE tutorial from the docs using the Tsit5()
algorithm:
using OrdinaryDiffEq
f(u,p,t) = 1.01*u
u0=1/2
tspan = (0.0,1.0)
prob = ODEProblem(f,u0,tspan)
sol = solve(prob,Tsit5(),reltol=1e-8,abstol=1e-8)
using Plots
plot(sol,linewidth=5,title="Solution to the linear ODE with a thick line",
xaxis="Time (t)",yaxis="u(t) (in μm)",label="My Thick Line!") # legend=false
plot!(sol.t, t->0.5*exp(1.01t),lw=3,ls=:dash,label="True Solution!")
That example uses the out-of-place syntax f(u,p,t)
, while the inplace syntax (more efficient for systems of equations) is shown in the Lorenz example:
using OrdinaryDiffEq
function lorenz(du,u,p,t)
du[1] = 10.0(u[2]-u[1])
du[2] = u[1]*(28.0-u[3]) - u[2]
du[3] = u[1]*u[2] - (8/3)*u[3]
end
u0 = [1.0;0.0;0.0]
tspan = (0.0,100.0)
prob = ODEProblem(lorenz,u0,tspan)
sol = solve(prob,Tsit5())
using Plots; plot(sol,vars=(1,2,3))
For "refined ODEs" like dynamical equations and SecondOrderODEProblem
s, refer to the DiffEqDocs. For example, in DiffEqTutorials.jl we show how to solve equations of motion using symplectic methods:
function HH_acceleration(dv,v,u,t)
x,y = u
dx,dy = dv
dv[1] = -x - 2x*y
dv[2] = y^2 - y -x^2
end
initial_positions = [0.0,0.1]
initial_velocities = [0.5,0.0]
prob = SecondOrderODEProblem(HH_acceleration,initial_velocities,initial_positions,tspan)
sol2 = solve(prob, KahanLi8(), dt=1/10);
Available Solvers
For the list of available solvers, please refer to the DifferentialEquations.jl ODE Solvers page and the Dynamical ODE Solvers page.