/raftify

Experimental High level Raft framework

Primary LanguageRustApache License 2.0Apache-2.0

raftify

⚠️ WARNING: This library is in a very experimental stage. The API could be broken.

raftify is a high-level implementation of Raft, developed with the goal of making it easy and straightforward to integrate the Raft algorithm.

It uses tikv/raft-rs and gRPC for the network layer and heed (LMDB wrapper) for the storage layer.

Quick guide

I strongly recommend to read the basic memstore example code to get how to use this library for starters, but here's a quick guide.

Define your own log entry

Define the data to be stored in LogEntry and how to serialize and deserialize it.

#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum LogEntry {
    Insert { key: u64, value: String },
}

impl AbstractLogEntry for LogEntry {
    fn encode(&self) -> Result<Vec<u8>> {
        serialize(self).map_err(|e| e.into())
    }

    fn decode(bytes: &[u8]) -> Result<LogEntry> {
        let log_entry: LogEntry = deserialize(bytes)?;
        Ok(log_entry)
    }
}

Define your application Raft FSM

Essentially, the following three methods need to be implemented for the Store.

  • apply: applies a committed entry to the store.
  • snapshot: returns snapshot data for the store.
  • restore: applies the snapshot passed as argument.

And also similarly to LogEntry, you need to implement encode and decode.

#[derive(Clone, Debug)]
pub struct HashStore(pub Arc<RwLock<HashMap<u64, String>>>);

impl HashStore {
    pub fn new() -> Self {
        Self(Arc::new(RwLock::new(HashMap::new())))
    }

    pub fn get(&self, id: u64) -> Option<String> {
        self.0.read().unwrap().get(&id).cloned()
    }
}

#[async_trait]
impl AbstractStateMachine for HashStore {
    async fn apply(&mut self, data: Vec<u8>) -> Result<Vec<u8>> {
        let log_entry: LogEntry = LogEntry::decode(&data)?;
        match log_entry {
            LogEntry::Insert { ref key, ref value } => {
                let mut db = self.0.write().unwrap();
                log::info!("Inserted: ({}, {})", key, value);
                db.insert(*key, value.clone());
            }
        };
        Ok(data)
    }

    async fn snapshot(&self) -> Result<Vec<u8>> {
        Ok(serialize(&self.0.read().unwrap().clone())?)
    }

    async fn restore(&mut self, snapshot: Vec<u8>) -> Result<()> {
        let new: HashMap<u64, String> = deserialize(&snapshot[..]).unwrap();
        let mut db = self.0.write().unwrap();
        let _ = std::mem::replace(&mut *db, new);
        Ok(())
    }

    fn encode(&self) -> Result<Vec<u8>> {
        serialize(&self.0.read().unwrap().clone()).map_err(|e| e.into())
    }

    fn decode(bytes: &[u8]) -> Result<Self> {
        let db: HashMap<u64, String> = deserialize(bytes)?;
        Ok(Self(Arc::new(RwLock::new(db))))
    }
}

Bootstrap a raft cluster

First bootstrap the cluster that contains the leader node.

let raft_addr = "127.0.0.1:60061".to_owned();
let node_id = 1;

let raft = Raft::bootstrap(
    node_id,
    raft_addr,
    store.clone(),
    raft_config,
    logger.clone(),
)?;

tokio::spawn(raft.clone().run());

// ...
tokio::try_join!(raft_handle)?;

Join follower nodes to the cluster

Then join the follower nodes.

If peer specifies the configuration of the initial members, the cluster will operate after all member nodes are bootstrapped.

let raft_addr = "127.0.0.1:60062".to_owned();
let peer_addr = "127.0.0.1:60061".to_owned();
let join_ticket = Raft::request_id(raft_addr, peer_addr).await;

let raft = Raft::bootstrap(
    join_ticket.reserved_id,
    raft_addr,
    store.clone(),
    raft_config,
    logger.clone(),
)?;

let raft_handle = tokio::spawn(raft.clone().run());
raft.join_cluster(vec![join_ticket]).await;

// ...
tokio::try_join!(raft_handle)?;

Manipulate FSM by RaftServiceClient

If you want to operate the FSM remotely, you can use RaftServiceClient.

let mut leader_client = create_client(&"127.0.0.1:60061").await.unwrap();

leader_client
    .propose(raft_service::ProposeArgs {
        msg: LogEntry::Insert {
            key: 1,
            value: "test".to_string(),
        }
        .encode()
        .unwrap(),
    })
    .await
    .unwrap();

Manipulate FSM by RaftNode

If you want to operate FSM locally, use the RaftNode type of the Raft object.

raft.propose(LogEntry::Insert {
    key: 123,
    value: "test".to_string(),
}.encode().unwrap()).await;

Debugging

You can use a collection of CLI commands that let you inspect the data persisted in stable storage and the status of Raft Servers.

❯ raftify-cli debug persisted ./logs/node-1
---- Persisted entries ----
Key: 1, "Entry { context: [], data: [], entry_type: EntryNormal, index: 1, sync_log: false, term: 1 }"
Key: 2, "Entry { context: [], data: ConfChange { change_type: AddNode, node_id: 2, context: [127.0.0.1:60062], id: 0 }, entry_type: EntryConfChange, index: 2, sync_log: false, term: 1 }"
Key: 3, "Entry { context: [], data: ConfChange { change_type: AddNode, node_id: 3, context: [127.0.0.1:60063], id: 0 }, entry_type: EntryConfChange, index: 3, sync_log: false, term: 1 }"

---- Metadata ----
HardState { term: 1, vote: 1, commit: 3 }
ConfState { voters: [1, 2, 3], learners: [], voters_outgoing: [], learners_next: [], auto_leave: false }
Snapshot { data: HashStore(RwLock { data: {}, poisoned: false, .. }), metadata: Some(SnapshotMetadata { conf_state: Some(ConfState { voters: [1, 2, 3], learners: [], voters_outgoing: [], learners_next: [], auto_leave: false }), index: 1, term: 1 }) }
Last index: 3

Bootstrapping from WAL

You can bootstrap cluster from WAL (Write Ahead Logs), and WAL's snapshot.

This feature is useful in cases where a failure occurs in more than the number of nodes in the quorum, requiring a restart of the cluster, or when there is a need to reboot the cluster after making a batch change to the cluster members.

Use the restore_wal_from and restore_wal_snapshot_from options in RaftConfig.

See this example for more details.

Support for other languages

raftify provides bindings for the following languages.

References

raftify was inspired by a wide variety of previous Raft implementations.

Great thanks to all the relevant developers.

  • tikv/raft-rs - Raft distributed consensus algorithm implemented using in this lib under the hood.
  • ritelabs/riteraft - A raft framework, for regular people. raftify was forked from this lib.