Contributors: 2021 N. Artrith (nartrith@atomistic.net), T. Morawietz, H. Guo, and A. Urban
A Collection of Public Open-Source Tools and Databases for Atomistic Machine Learning
- Contributing
- ML atomistic potentials
- ML tools and packages for materials science and drug discovery applications
- Databases
- Workflow management
- Peer-reviewed articles referring to this document
We welcome everybody to contribute to this list. Your name will be added to the list of contributors at the top of this document.
Entries sorted by the year of the publication.
Name | Features | Reference |
---|---|---|
ænet | Capable of handling many chemical species | Artrith, Urban, Comput. Mater. Sci. 114 (2016) 135 |
Amp | Large descriptor library | Khorshidi, Peterson, Comput. Phys. Commun. 207 (2016) 310 |
ANI | Accurate potential for molecular systems | Smith, Isayev, Roitberg, Chem. Sci. 8 (2017) 3192 |
TensorMol | Electrostatics and van der Waals interactions | Yao et al., Chem. Sci. 9 (2018) 2261 |
DeePMD-kit | GPU support | Wang et al., Comput. Phys. Commun. 228 (2018) 178 |
SchNetPack | Feature learning | Schütt et al., J. Chem. Theory Comput. 15 (2019) 448 |
N2P2 | Behler-Parinello neural network potential | Singraber et al., J. Chem. Theory Comput. 15 (2019) 1827 |
SchNarc | Extension to multiple electronic states based on SchNet and SHARC | Westermayr et al., J. Phys. Chem. Lett. 11 (2020) 3828 |
PANNA | Properties from neural network architectures | Lot et al., Comput. Phys. Commun. 256, (2020) 107402 |
TorchANI | Pytorch implementation of ANI | Gao et al., J. Chem. Inf. Model., 10.1021/acs.jcim.0c00451 (2020) |
Name | Description | Reference |
---|---|---|
GAP/SOAP | GPR based ML potential | Bartók et al., Phys. Rev. Lett. 104 (2010) 136403 Phys. Rev. B 87 (2013) 184115 |
SNAP | Linear ML potential based on bispectrum components of the local neighbor density | Thompson et al., J. Comput. Phys. 285 (2015) 316 |
AutoForce | SGPR based ML potential (on-the-fly) | Hajibabaei et al., Phys. Rev. B. 103 (2021) 214102 |
Name | Description | Reference |
---|---|---|
NOMAD Repository | Open-Access Platform for Data Sharing | Draxl, Scheffler, J. Phys. Mater. 2 (2019) 036001 |
Materials Cloud | Platform for Open Computational Science | Talirz et al., arXiv:2003.12510 (2020) |
Name | Description | Reference |
---|---|---|
American Mineralogist Crystal Structure Database | Crystal structure database for mineralogist | Downs and Hall-Wallace, American Mineralogist 88 (2003) 247 |
COD | Crystallography Open Database | Grazulis et al. (2009), Gražulis (2012), Gražulis (2015), Merkys (2016), Quirós (2018), Vaitkus (2021) |
AFLOW | Ab initio computational materials science database | Curtarolo et al., Cumput. Mater. Sci. 58 (2012) 218 |
NREL MatDB | Computational materials database with focus on renewable energy applications | Stevanovic et al. (2012), Lany (2013), Lany (2015) |
Materials Project | A materials genome approach to accelerating materials innovation | Jain et al., APL Materials 1 (2013) 011002 |
OQMD | Database of DFT calculated thermodynamic and structural materials properties | Kirklin et al., Npj Comput. Mater. 1 (2015) 15010 |
COMBO | Bayesian Optimization Library | Ueno et al., Materials Discovery 4 (2016) 18 |
Open Catalyst Project | Using AI to model and discover new catalysts to address the energy challenges posed by climate change | Facebook AI and Carnegie Mellon (2020) |
JARVIS-API | Integrated Infrastructure for Data-driven Materials Design | Choudhary et al., arXiv:2007.01831 (2020) |
Name | Description | Reference |
---|---|---|
MoleculeNet | Large scale benchmark for molecular machine learning | Wu et al., Chem. Sci. 9 (2018) 513 |
FMODB | Database of quantum mechanical FMO calculations | Kato et al., J. Chem. Inf. Model. 10.1021/acs.jcim.0c00273 (2020) |
QM-sym | Symmetrized quantum chemistry database of 135k organic molecules | Liang et al., Sci. Data 6 (2020) 213 |
Name | Description | Reference |
---|---|---|
Research Object Crate | A JSON-based approach for research object serialization | Bechhofer et al., Future Generation Computer Systems 29 (2013) 599-611 |
Common Workflow Language | An open standard for analysis workflows and tools | Amstutz et al., Common Workflow Language, v1.0 (2016) |
DLHub | Sharing of ML models and workflows | Chard et al., IEEE IPDPS (2019) 283-292, Blaiszik et al., MRS Commun. 9 (2019) 1125–1133 |
- H. Guo, Q. Wang, A Stuke, A. Urban, and N. Artrith, Front. Energy Res. just accepted, (2021) Open Access.
- A. M. Miksch, T. Morawietz, J. Kästner, A. Urban, and N. Artrith, Machine Learning: Science and Technology, in press, (2021) Open Access DOI: https://doi.org/10.1088/2632-2153/abfd96 .
- T. Morawietz and N. Artrith, J. Comput. Aided Mol. Des. 35, 557-586 (2021) Open Access DOI: https://doi.org/10.1007/s10822-020-00346-6 .