Humble Data strives to be an in-memory data wrangler with a small and intuitive API. It's useful if you have a small to medium (thousands or tens of thousands) records returned from a database, and you'd like to massage and wrangle and hustle with the data in memory.
You use Humble Data to build a Frame
object from any data source of tidy data; typically from a CSV file or a database query result. The Frame
object can then be manipulated and queried further using aggregate, selection, sorting, and filtering operations. Aggregate functions return one value. All other operations return a new Frame
object. This allows operations to be chained.
Humble Data works best with tidy data sets. Tidy data is data that is arranged such that each row represents one sample, and each column represents one variable. In Humble Data, we call a column a
field
.
npm install humbledata
Note that the examples below are in TypeScript.
The Frame
object, once built, is immutable. You build a Frame
object with a Builder
.
// build by adding one object at a time
import { Builder } from "humbledata"
const frame = new Builder()
.addRow({ name: 'foo', size: 10 })
.addRow({ name: 'bar', size: 30 })
.build()
// ...or build from a given array of objects
const data = [
{ name: 'alice', age: 20, height: 170 },
{ name: 'bob', age: 30, height: 180 },
{ name: 'charlie', age: 40, height: 175 }
]
const frame = new Builder(data).build()
Frames can be printed to the console with the print()
function:
frame.print()
┌─────────┬───────────┬─────┬────────┐
│ (index) │ name │ age │ height │
├─────────┼───────────┼─────┼────────┤
│ 0 │ 'alice' │ 20 │ 170 │
│ 1 │ 'bob' │ 30 │ 180 │
│ 2 │ 'charlie' │ 40 │ 175 │
└─────────┴───────────┴─────┴────────┘
Aggregate functions return a single value calculated from applying an aggregate function to all rows that have a numeric value for the given field.
const sum = f.sum('age') // sum = 90
const max = f.max('height') // max = 180
const min = f.min('height') // min = 170
const avg = f.avg('age') // avg = 30
const median = f.median('height') // median = 175
The count
function counts only rows where the given field value is anything else than undefined
.
const sparse = [
{ x: 1, y: undefined },
{ x: 2, y: 30 },
{ x: 3, y: 30 }
]
const frame = new Builder(sparse).build()
const count = frame.count('y') // count = 2 (not 3)
The distinct
function returns the number of distinct (unique), non-undefined
, values for a given field.
const distinctX = frame.distinct('x') // distinctX = 3
const distinctY = frame.distinct('y') // distinctY = 1
The group
function combines grouping and aggregation. It groups data by given field, and then it applies an aggregate function to every item in each group. The resulting Frame
has one Row
per group.
const gameData = [
{ player: 'eva', points: 80 },
{ player: 'eva', points: 10 },
{ player: 'eva', points: 50 },
{ player: 'bob', points: 90 },
{ player: 'joe', points: 20 },
]
new Builder(gameData)
.build()
.print('Player stats')
.group('player', 'sum', 'points')
.print('Total points per player')
Player stats
┌─────────┬────────┬────────┐
│ (index) │ player │ points │
├─────────┼────────┼────────┤
│ 0 │ 'eva' │ 80 │
│ 1 │ 'eva' │ 10 │
│ 2 │ 'eva' │ 50 │
│ 3 │ 'bob' │ 90 │
│ 4 │ 'joe' │ 20 │
└─────────┴────────┴────────┘
Total points per player
┌─────────┬────────┬────────────┐
│ (index) │ player │ sum_points │
├─────────┼────────┼────────────┤
│ 0 │ 'eva' │ 140 │
│ 1 │ 'bob' │ 90 │
│ 2 │ 'joe' │ 20 │
└─────────┴────────┴────────────┘
The where
function is used to filter out rows based on a condition. The where
function returns a new Frame
object.
f.where('age', '>=', 30).print()
┌─────────┬───────────┬─────┬────────┐
│ (index) │ name │ age │ height │
├─────────┼───────────┼─────┼────────┤
│ 0 │ 'bob' │ 30 │ 180 │
│ 1 │ 'charlie' │ 40 │ 175 │
└─────────┴───────────┴─────┴────────┘
The split
function splits one Frame
into several new Frames
, by grouping on a given field.
const f = new Builder().addRows(peopleData).build().print()
┌─────────┬───────────┬─────┬─────┬────────┐
│ (index) │ name │ age │ sex │ height │
├─────────┼───────────┼─────┼─────┼────────┤
│ 0 │ 'alice' │ 20 │ 'f' │ 170 │
│ 1 │ 'charlie' │ 40 │ 'm' │ 175 │
│ 2 │ 'per' │ 2 │ 'm' │ 95 │
│ 3 │ 'lise' │ 3 │ 'f' │ 125 │
│ 4 │ 'august' │ 48 │ 'm' │ 180 │
└─────────┴───────────┴─────┴─────┴────────┘
const res = f.split('sex')
res.map(r => r.print())
┌─────────┬─────────┬─────┬─────┬────────┐
│ (index) │ name │ age │ sex │ height │
├─────────┼─────────┼─────┼─────┼────────┤
│ 0 │ 'alice' │ 20 │ 'f' │ 170 │
│ 1 │ 'lise' │ 3 │ 'f' │ 125 │
└─────────┴─────────┴─────┴─────┴────────┘
┌─────────┬───────────┬─────┬─────┬────────┐
│ (index) │ name │ age │ sex │ height │
├─────────┼───────────┼─────┼─────┼────────┤
│ 0 │ 'charlie' │ 40 │ 'm' │ 175 │
│ 1 │ 'per' │ 2 │ 'm' │ 95 │
│ 2 │ 'august' │ 48 │ 'm' │ 180 │
└─────────┴───────────┴─────┴─────┴────────┘
npm run test
August Flatby
- Github: @augustzf
Give this project a ⭐️ if you like this kind of stuff!