/mf-prior-exp

Primary LanguagePythonMIT LicenseMIT

NOTE: This repo will not be updated or maintained after November 1, 2023.

PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning

This repo is purely for reproducing the experiments of the paper.

To use PriorBand in practice, we have an up-to-date implementation in NePS which should be the preferred way to use the optimizer.

Installation

1. Clone the repository

git clone --recursive https://github.com/automl/mf-prior-exp.git

# To use the version used for the paper
git clone --branch "vPaper-arxiv" --recursive https://github.com/automl/mf-prior-exp.git

# If you forgot to use the --recursive flag or checkout the branches, you can do the following
# to manuall perform the steps
cd mf-prior-exp

# If repeating experiments from the paper
# git checkout vPaper-priorband

git submodule update --init

2. Conda, Poetry, Package, Pre-Commit

To setup tooling and install the package, follow this documentation (removed) using the environment name of your choice.

NOTE: Requires Python 3.7

poetry install

3. Just

To install our command runner just you can check the just documentation, or run the below command

curl --proto '=https' --tlsv1.2 -sSf https://just.systems/install.sh | bash -s -- --to $HOME/.just

Also, to make the just command available you should add

export PATH="$HOME/.just:$PATH"

to your .zshrc / .bashrc or alternatively simply run the export manually.

4. Data

python -m mfpbench download

You should get a layout that looks like so:

data
├── jahs-bench-data
│   ├── assembled_surrogates
│   │   ├── cifar10
│   │   ├── colorectal_histology
│   │   └── fashion_mnist
│   ├── assembled_surrogates.tar
│   └── LICENSE
├── pd1-data
│   ├── data.tar.gz
│   └── surrogates
│       ├── cifar100-wide_resnet-2048-train_cost.json
│       ├── cifar100-wide_resnet-2048-valid_error_rate.json
│       ├── imagenet-resnet-512-train_cost.json
│       ├── imagenet-resnet-512-valid_error_rate.json
│       ├── lm1b-transformer-2048-train_cost.json
│       ├── lm1b-transformer-2048-valid_error_rate.json
│       ├── surrogates.zip
│       ├── translate_wmt-xformer_translate-64-train_cost.json
│       └── translate_wmt-xformer_translate-64-valid_error_rate.json
└── yahpo-gym-data
    ├── benchmark_suites
    │   └── v1.0
    ├── fcnet
    ├── iaml_glmnet
    ├── iaml_ranger
    ├── iaml_rpart
    ├── iaml_super
    ├── iaml_xgboost
    ├── lcbench
    ├── nb301
    ├── rbv2_aknn
    ├── rbv2_glmnet
    ├── rbv2_ranger
    ├── rbv2_rpart
    ├── rbv2_super
    ├── rbv2_svm
    └── rbv2_xgboost

Once you have done so, you should be able to load the surrogates.

Usage

Running a singular local experiment

# We need at least two seeds for the plotting to work
just run random_search lm1b_transformer_2048_prior-at25 test 0
just run random_search lm1b_transformer_2048_prior-at25 test 1
just run priorband lm1b_transformer_2048_prior-at25 test 0
just run priorband lm1b_transformer_2048_prior-at25 test 1

# For more options see which can be run directly
python -m mf_prior_experiments.run -h
python -m mf_prior_experiments.run algorithm=random_search benchmark=lm1b_transformer_2048_prior-at25 experiment_group=test

Running a grid of experiments on slurm

To run 5 seeds for two algorithms and benchmarks, e.g.,

just submit random_search,priorband lcbench189906_prior-at25 "range(0, 5)" test
# note the whitespace in `"range(0, 5)"`.

# Use `just submit` to see the arguments

To get a list of benchmarks

just benchmarks

To get a list of algorithms

just algorithms

Analysing experiments

All plots included are provided by src/mf_prior_experiments/plot.py. The plots rely on the results being collected and cached first, before being plotted, you can do so with.

python -m src.mf_prior_experiments.plot \
    --collect \
    --collect-ignore-missing \
    --experiment_group "test" \
    --n_workers 1  # If collecting results for parallel runs, specify the number of workers
    # --parallel  # To speed up collection of many results

To do the relative ranking plots:

# JSON in bash ... yup
incumbent_traces="
{
  \"Good prior\": [\"lm1b_transformer_2048_prior-at25\"]
}
"

python -m src.mf_prior_experiments.plot \
	--algorithms random_search priorband \
	--experiment_group "test" \
	--prefix "test_plot" \
	--dpi 200 \
	--ext "png" \
	--plot_default \
    --dynamic_y_lim \
	--n_workers 1 \
	--incumbent_traces "${incumbent_traces}" \
	--x_range_it 1 12

To cite the work:

@inproceedings{mallik-neurips23a,
  title={PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning},
  author={N. Mallik, E. Bergman, C. Hvarfner, D. Stoll, M. Janowski, M. Lindauer, L. Nardi, F. Hutter},
  booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
  year={2023},
  url={https://openreview.net/forum?id=uoiwugtpCH}
}