ssh

ssh username@paramshakti.iitkgp.ac.in
ssh -X username@paramshakti.iitkgp.ac.in # for gui
ssh -p 4422 username@paramshakti.iitkgp.ac.in # connecting from outside iitkgp

Directory Structure

  • /home/username
    • 40GB storage and 50GB hard limit
    • has backup
    • use it to store important files, outputs, logs, etc.
    • don't store datasets here. don't submit jobs from here.
  • /scratch/username
    • 2TB storage
    • no backup
    • use it to store datasets, code, etc.
    • submit jobs from here
    • export job outputs to /home/username if needed

Installing conda

Easy just follow the instructions here

mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh

~/miniconda3/bin/conda init bash
~/miniconda3/bin/conda init zsh

Installing linux packages

Since we require sudo to use the default package manager, yum, we will install packages to our home directory and add the binaries to our path.

  • Create a directory to store the packages and downloaded .rpm files
mkdir -p ~/centos # for installed packages
mkdir -p ~/rpm  # for downloading .rpm files
  • Add the following to your .bashrc or .zshrc
export PATH="$HOME/centos/usr/sbin:$HOME/centos/usr/bin:$HOME/centos/bin:$PATH"
export MANPATH="$HOME/centos/usr/share/man:$MANPATH"
L='/lib:/lib64:/usr/lib:/usr/lib64'
export LD_LIBRARY_PATH="$L:$HOME/centos/usr/lib:$HOME/centos/usr/lib64"
  • now download .rpm using yumdownloader --destdir ~/rpm --resolve <package_name> and install using rpm2cpio <package_name>.rpm | cpio -D ~/centos -idmv
  • you can use the script install_all.sh to install all the packages in the rpm directory
  • or you can run python3 install_rpm.py <package_name> to install a single package. find the python script here

Modules

  • Use module avail to see all available modules
  • Use module load <module_name> to load a module
  • Latest cuda version installed is 11.7 so don't just pip install torch. You'll have to compile torch with correct cuda version. Use module load compiler/cuda/11.7 in your job script before submitting the job on gpu nodes. see: https://pytorch.org/get-started/previous-versions/

eg for cuda 11.7 :

conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
# or use pip
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
  • Find the available modules here (as of Jan 2024)

Installing MuJoCo

pip3 install -U 'mujoco-py<2.2,>=2.1' numpy scipy quaternion numpy-quaternion mujoco

mkdir ~/.mujoco && cd ~/.mujoco
wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz
tar -xf mujoco210-linux-x86_64.tar.gz
rm mujoco210-linux-x86_64.tar.gz
  • add the following to your .bashrc or .zshrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco210/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia

some basic slurm commands

  • sbatch <job_script> to submit a job
  • squeue to see jobs
  • scancel <job_id> to cancel a job
  • sinfo to see nodes
  • sinfo -s to see nodes in a table

jupyter

  1. make sure your environment has jupyter
  2. submit an interactive bash job by running srun -p gpu --time=<H>:<MM>:<SS> --gres=gpu:<num_gpus> --pty bash
  3. activate your environment
  4. (optional) use screen to (detachably) multiplex the shell
  5. run hostname -i and note down your gpu node's IP, say as ip (if you don't know it already)
  6. run jupyter notebook --port XXXX --no-browser
  7. copy one of the full links (after Jupyter Server <VER> is running at:), e.g. http://localhost:<PORT>/tree?token=<TOKEN>
  8. many ports are blocked so note down which port (<PORT> above) the jupyter kernel is actually listening on
  9. on your local machine, in a new shell make a tunnel by running ssh -t -t <USER>@paramshakti.iitkgp.ac.in -L localhost:<PORT>:localhost:<PORT> ssh <USER>@<ip> -L localhost:<PORT>:localhost:<PORT>
  10. open the link you copied in step 7 in a browser on your local machine

wandb

  • GPU nodes do not have access to the internet
  • Set wandb to offline mode using
    export WANDB_MODE=offline # on shell
    os.environ["WANDB_MODE"] = "offline" # in jupyter or inside a script
    wandb.init( ...,  mode="offline")

GPU node IPs

  1. gpu021: 172.10.0.121
  2. gpu013: 172.10.0.113
  3. gpu006 172.10.0.106

kinda incomplete i'll update it as i learn more :p