Call all LLM APIs using the OpenAI format [Anthropic, Huggingface, Cohere, TogetherAI, Azure, OpenAI, etc.]
Bug Report
ยท
Feature Request
Docs | 100+ Supported Models | Demo Video |
LiteLLM manages
- Translating inputs to the provider's completion and embedding endpoints
- Guarantees consistent output, text responses will always be available at
['choices'][0]['message']['content']
- Exception mapping - common exceptions across providers are mapped to the OpenAI exception types
05/10/2023: LiteLLM is adopting Semantic Versioning for all commits. Learn more
pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["COHERE_API_KEY"] = "your-cohere-key"
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)
# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)
Streaming (Docs)
liteLLM supports streaming the model response back, pass stream=True
to get a streaming iterator in response.
Streaming is supported for OpenAI, Azure, Anthropic, Huggingface models
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
print(chunk['choices'][0]['delta'])
# claude 2
result = completion('claude-2', messages, stream=True)
for chunk in result:
print(chunk['choices'][0]['delta'])
Caching (Docs)
LiteLLM supports caching completion()
and embedding()
calls for all LLMs. Hosted Cache LiteLLM API
import litellm
from litellm.caching import Cache
import os
litellm.cache = Cache()
os.environ['OPENAI_API_KEY'] = ""
# add to cache
response1 = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "why is LiteLLM amazing?"}],
caching=True
)
# returns cached response
response2 = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "why is LiteLLM amazing?"}],
caching=True
)
print(f"response1: {response1}")
print(f"response2: {response2}")
OpenAI Proxy Server (Docs)
Spin up a local server to translate openai api calls to any non-openai model (e.g. Huggingface, TogetherAI, Ollama, etc.)
This works for async + streaming as well.
litellm --model <model_name>
Running your model locally or on a custom endpoint ? Set the --api-base
parameter see how
Supported Provider (Docs)
Provider | Completion | Streaming | Async Completion | Async Streaming |
---|---|---|---|---|
openai | โ | โ | โ | โ |
cohere | โ | โ | โ | โ |
anthropic | โ | โ | โ | โ |
replicate | โ | โ | โ | โ |
huggingface | โ | โ | โ | โ |
together_ai | โ | โ | โ | โ |
openrouter | โ | โ | โ | โ |
vertex_ai | โ | โ | โ | โ |
palm | โ | โ | โ | โ |
ai21 | โ | โ | โ | โ |
baseten | โ | โ | โ | โ |
azure | โ | โ | โ | โ |
sagemaker | โ | โ | โ | โ |
bedrock | โ | โ | โ | โ |
vllm | โ | โ | โ | โ |
nlp_cloud | โ | โ | โ | โ |
aleph alpha | โ | โ | โ | โ |
petals | โ | โ | โ | โ |
ollama | โ | โ | โ | โ |
deepinfra | โ | โ | โ | โ |
To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.
Here's how to modify the repo locally: Step 1: Clone the repo
git clone https://github.com/BerriAI/litellm.git
Step 2: Navigate into the project, and install dependencies:
cd litellm
poetry install
Step 3: Test your change:
cd litellm/tests # pwd: Documents/litellm/litellm/tests
pytest .
Step 4: Submit a PR with your changes! ๐
- push your fork to your GitHub repo
- submit a PR from there
Learn more on how to make a PR
- Schedule Demo ๐
- Community Discord ๐ญ
- Our numbers ๐ +1 (770) 8783-106 / โญ+1 (412) 618-6238โฌ
- Our emails โ๏ธ ishaan@berri.ai / krrish@berri.ai
- Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI, Cohere