This project offers a lightweight, procedural unit testing framework based on nothing but standard Fortran.
Integration with meson, cmake and Fortran package manager (fpm) is available.
Alternatively, the testdrive.F90
source file can be redistributed in the project's testsuite as well.
Testsuites are defined by a collect_interface
returning a set of unittest_type
objects.
To create a new test use the new_unittest
constructor, which requires a test identifier and a procedure with a test_interface
compatible signature.
The error status is communicated by the allocation status of an error_type
.
The necessary boilerplate code to setup the test entry point is just
program tester
use, intrinsic :: iso_fortran_env, only : error_unit
use testdrive, only : run_testsuite, new_testsuite, testsuite_type
use test_suite1, only : collect_suite1
use test_suite2, only : collect_suite2
implicit none
integer :: stat, is
type(testsuite_type), allocatable :: testsuites(:)
character(len=*), parameter :: fmt = '("#", *(1x, a))'
stat = 0
testsuites = [ &
new_testsuite("suite1", collect_suite1), &
new_testsuite("suite2", collect_suite2) &
]
do is = 1, size(testsuites)
write(error_unit, fmt) "Testing:", testsuites(is)%name
call run_testsuite(testsuites(is)%collect, error_unit, stat)
end do
if (stat > 0) then
write(error_unit, '(i0, 1x, a)') stat, "test(s) failed!"
error stop
end if
end program tester
Every test is defined in a separate module using a collect
function, which is exported and added to the testsuites
array in the test runner.
All tests have a simple interface with just an allocatable error_type
as output to provide the test results.
module test_suite1
use testdrive, only : new_unittest, unittest_type, error_type, check
implicit none
private
public :: collect_suite1
contains
!> Collect all exported unit tests
subroutine collect_suite1(testsuite)
!> Collection of tests
type(unittest_type), allocatable, intent(out) :: testsuite(:)
testsuite = [ &
new_unittest("valid", test_valid), &
new_unittest("invalid", test_invalid, should_fail=.true.) &
]
end subroutine collect_suite1
subroutine test_valid(error)
type(error_type), allocatable, intent(out) :: error
! ...
end subroutine test_valid
subroutine test_invalid(error)
type(error_type), allocatable, intent(out) :: error
! ...
end subroutine test_invalid
end module test_suite1
The procedures defining the tests can contain any Fortran code required for checking the correctness of the project.
An easy way to do so is provided by the generic check
function.
subroutine test_valid(error)
type(error_type), allocatable, intent(out) :: error
call check(error, 1 + 2 == 3)
if (allocated(error)) return
! equivalent to the above
call check(error, 1 + 2, 3)
if (allocated(error)) return
end subroutine test_valid
After each check, the status of the error should be checked. Uncaught errors will not be silently dropped, instead the error will be caught, its message displayed and the run aborted. Possible ways to use check are listed below
available checks | arguments |
---|---|
logical check | error, logical, ... |
status check | error, integer, ... |
logical comparison | error, logical, logical, ... |
integer comparison | error, integer, ... |
character comparison | error, character, character, ... |
real comparison | error, real, real, ..., thr=real, rel=logical |
real NaN check | error, real, ... |
complex comparison | error, complex, complex, ..., thr=real, rel=logical |
complex NaN check | error, complex, ... |
Each check will generate a meaningful error message based on the available arguments, but can also be provided with a custom error message instead.
To generate custom checks the test_failed
procedure is available to generate error messages
subroutine test_custom(error)
type(error_type), allocatable, intent(out) :: error
! ...
if (.not.cond) then
call test_failed(error, "Custom check failed")
return
end if
! ...
if (.not.cond) then
call test_failed(error, "Custom check failed", "Additional context")
return
end if
end subroutine test_custom
To conditionally skip a test use the skip_test
procedure.
It uses the same signature as test_failed
, but will mark the respective test as skipped, this is useful to disable tests based on conditional compilation, e.g. by using a preprocessor or a different submodule.
An uncaught skipped test will fail regardless, therefore make sure to not run any other checks afterwards.
Finally, for usage with fpm it is beneficial to have a single test driver which can run all tests. While this brings the disadvantage of always having to run the complete testsuite, the main driver can provide the flexibility to select the suite and also the unit test using the boilerplate code shown here:
!> Driver for unit testing
program tester
use, intrinsic :: iso_fortran_env, only : error_unit
use testdrive, only : run_testsuite, new_testsuite, testsuite_type, &
& select_suite, run_selected, get_argument
use test_suite1, only : collect_suite1
use test_suite2, only : collect_suite2
implicit none
integer :: stat, is
character(len=:), allocatable :: suite_name, test_name
type(testsuite_type), allocatable :: testsuites(:)
character(len=*), parameter :: fmt = '("#", *(1x, a))'
stat = 0
testsuites = [ &
new_testsuite("suite1", collect_suite1), &
new_testsuite("suite2", collect_suite2) &
]
call get_argument(1, suite_name)
call get_argument(2, test_name)
if (allocated(suite_name)) then
is = select_suite(testsuites, suite_name)
if (is > 0 .and. is <= size(testsuites)) then
if (allocated(test_name)) then
write(error_unit, fmt) "Suite:", testsuites(is)%name
call run_selected(testsuites(is)%collect, test_name, error_unit, stat)
if (stat < 0) then
error stop 1
end if
else
write(error_unit, fmt) "Testing:", testsuites(is)%name
call run_testsuite(testsuites(is)%collect, error_unit, stat)
end if
else
write(error_unit, fmt) "Available testsuites"
do is = 1, size(testsuites)
write(error_unit, fmt) "-", testsuites(is)%name
end do
error stop 1
end if
else
do is = 1, size(testsuites)
write(error_unit, fmt) "Testing:", testsuites(is)%name
call run_testsuite(testsuites(is)%collect, error_unit, stat)
end do
end if
if (stat > 0) then
write(error_unit, '(i0, 1x, a)') stat, "test(s) failed!"
error stop 1
end if
end program tester
From fpm this allows to run all tests using just the fpm test command, but also to debug an individual test in a debugger.
For example to run broken-test in large-suite with gdb
use
fpm test --runner gdb -- large-suite broken-test
To make this approach feasible for meson the tests can be created as individual suites. A usual layout of the test directory like
test
├── main.f90
├── meson.build
├── test_suite1.f90
├── test_suite2.f90
└── ...
Can use the following snippet to automatically create individual tests running complete suites inside the driver. Resolution to the unit tests is possible but usually not desired, because the individual runtime of the tests will be short compared to the overhead to start the actual test.
testdrive_dep = dependency('test-drive', fallback: ['test-drive', 'testdrive_dep'])
tests = [
'suite1',
'suite2',
# ...
]
test_srcs = files(
'main.f90',
)
foreach t : tests
test_srcs += files('test_@0@.f90'.format(t.underscorify()))
endforeach
tester = executable(
'tester',
sources: test_srcs,
dependencies: [proj_dep, testdrive_dep],
)
test('all tests', tester)
foreach t : tests
test(t, tester, args: t)
endforeach
Similar for a CMake based build the tests can be generated automatically for the layout shown below.
test
├── CMakeLists.txt
├── main.f90
├── test_suite1.f90
├── test_suite2.f90
└── ...
The CMake file in the test directory should look similar to the one shown here
if(NOT TARGET "test-drive::test-drive")
find_package("test-drive" REQUIRED)
endif()
# Unit testing
set(
tests
"suite1"
"suite2"
)
set(
test-srcs
"main.f90"
)
foreach(t IN LISTS tests)
string(MAKE_C_IDENTIFIER ${t} t)
list(APPEND test-srcs "test_${t}.f90")
endforeach()
add_executable(
"${PROJECT_NAME}-tester"
"${test-srcs}"
)
target_link_libraries(
"${PROJECT_NAME}-tester"
PRIVATE
"${PROJECT_NAME}-lib"
"test-drive::test-drive"
)
foreach(t IN LISTS tests)
add_test("${PROJECT_NAME}/${t}" "${PROJECT_NAME}-tester" "${t}")
endforeach()
CMake module to find testing framework
The following module allows to find or fetch an installation of this project in CMake
#[[.rst:
Find test-drive
---------------
Makes the test-drive project available.
Imported Targets
^^^^^^^^^^^^^^^^
This module provides the following imported target, if found:
``test-drive::test-drive``
The test-drive library
Result Variables
^^^^^^^^^^^^^^^^
This module will define the following variables:
``TEST_DRIVE_FOUND``
True if the test-drive library is available
``TEST_DRIVE_SOURCE_DIR``
Path to the source directory of the test-drive project,
only set if the project is included as source.
``TEST_DRIVE_BINARY_DIR``
Path to the binary directory of the test-drive project,
only set if the project is included as source.
Cache variables
^^^^^^^^^^^^^^^
The following cache variables may be set to influence the library detection:
``TEST_DRIVE_FIND_METHOD``
Methods to find or make the project available. Available methods are
- ``cmake``: Try to find via CMake config file
- ``pkgconf``: Try to find via pkg-config file
- ``subproject``: Use source in subprojects directory
- ``fetch``: Fetch the source from upstream
``TEST_DRIVE_DIR``
Used for searching the CMake config file
``TEST_DRIVE_SUBPROJECT``
Directory to find the test-drive subproject, relative to the project root
``TEST_DRIVE_GIT_TAG``
The tag to use if fetching from git.
#]]
set(_lib "test-drive")
set(_pkg "TEST_DRIVE")
set(_url "https://github.com/fortran-lang/test-drive")
if(NOT DEFINED "${_pkg}_FIND_METHOD")
if(DEFINED "${PROJECT_NAME}-dependency-method")
set("${_pkg}_FIND_METHOD" "${${PROJECT_NAME}-dependency-method}")
else()
set("${_pkg}_FIND_METHOD" "cmake" "pkgconf" "subproject" "fetch")
endif()
set("_${_pkg}_FIND_METHOD")
endif()
foreach(method ${${_pkg}_FIND_METHOD})
if(TARGET "${_lib}::${_lib}")
break()
endif()
if("${method}" STREQUAL "cmake")
message(STATUS "${_lib}: Find installed package")
if(DEFINED "${_pkg}_DIR")
set("_${_pkg}_DIR")
set("${_lib}_DIR" "${_pkg}_DIR")
endif()
find_package("${_lib}" CONFIG)
if("${_lib}_FOUND")
message(STATUS "${_lib}: Found installed package")
break()
endif()
endif()
if("${method}" STREQUAL "pkgconf")
find_package(PkgConfig QUIET)
pkg_check_modules("${_pkg}" QUIET "${_lib}")
if("${_pkg}_FOUND")
message(STATUS "Found ${_lib} via pkg-config")
add_library("${_lib}::${_lib}" INTERFACE IMPORTED)
target_link_libraries(
"${_lib}::${_lib}"
INTERFACE
"${${_pkg}_LINK_LIBRARIES}"
)
target_include_directories(
"${_lib}::${_lib}"
INTERFACE
"${${_pkg}_INCLUDE_DIRS}"
)
break()
endif()
endif()
if("${method}" STREQUAL "subproject")
if(NOT DEFINED "${_pkg}_SUBPROJECT")
set("_${_pkg}_SUBPROJECT")
set("${_pkg}_SUBPROJECT" "subprojects/${_lib}")
endif()
set("${_pkg}_SOURCE_DIR" "${PROJECT_SOURCE_DIR}/${${_pkg}_SUBPROJECT}")
set("${_pkg}_BINARY_DIR" "${PROJECT_BINARY_DIR}/${${_pkg}_SUBPROJECT}")
if(EXISTS "${${_pkg}_SOURCE_DIR}/CMakeLists.txt")
message(STATUS "Include ${_lib} from ${${_pkg}_SUBPROJECT}")
add_subdirectory(
"${${_pkg}_SOURCE_DIR}"
"${${_pkg}_BINARY_DIR}"
)
add_library("${_lib}::${_lib}" INTERFACE IMPORTED)
target_link_libraries("${_lib}::${_lib}" INTERFACE "${_lib}")
# We need the module directory in the subproject before we finish the configure stage
if(NOT EXISTS "${${_pkg}_BINARY_DIR}/include")
make_directory("${${_pkg}_BINARY_DIR}/include")
endif()
break()
endif()
endif()
if("${method}" STREQUAL "fetch")
if(NOT DEFINED "${_pkg}_GIT_TAG")
set("_${_pkg}_GIT_TAG")
set("${_pkg}_GIT_TAG" "HEAD")
endif()
message(STATUS "Retrieving ${_lib} from ${_url} with tag ${${_pkg}_GIT_TAG}")
include(FetchContent)
FetchContent_Declare(
"${_lib}"
GIT_REPOSITORY "${_url}"
GIT_TAG "${${_pkg}_GIT_TAG}"
)
FetchContent_MakeAvailable("${_lib}")
add_library("${_lib}::${_lib}" INTERFACE IMPORTED)
target_link_libraries("${_lib}::${_lib}" INTERFACE "${_lib}")
# We need the module directory in the subproject before we finish the configure stage
FetchContent_GetProperties("${_lib}" SOURCE_DIR "${_pkg}_SOURCE_DIR")
FetchContent_GetProperties("${_lib}" BINARY_DIR "${_pkg}_BINARY_DIR")
if(NOT EXISTS "${${_pkg}_BINARY_DIR}/include")
make_directory("${${_pkg}_BINARY_DIR}/include")
endif()
break()
endif()
endforeach()
if(TARGET "${_lib}::${_lib}")
set("${_pkg}_FOUND" TRUE)
else()
set("${_pkg}_FOUND" FALSE)
endif()
if(DEFINED "_${_pkg}_GIT_TAG")
unset("${_pkg}_GIT_TAG")
unset("_${_pkg}_GIT_TAG")
endif()
if(DEFINED "_${_pkg}_SUBPROJECT")
unset("${_pkg}_SUBPROJECT")
unset("_${_pkg}_SUBPROJECT")
endif()
if(DEFINED "_${_pkg}_DIR")
unset("${_lib}_DIR")
unset("_${_pkg}_DIR")
endif()
if(DEFINED "_${_pkg}_FIND_METHOD")
unset("${_pkg}_FIND_METHOD")
unset("_${_pkg}_FIND_METHOD")
endif()
unset(_lib)
unset(_pkg)
unset(_url)
This project is free software: you can redistribute it and/or modify it under the terms of the Apache License, Version 2.0 or MIT license at your opinion.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an as is basis, without warranties or conditions of any kind, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.