git clone https://github.com/ay-amityadav/HiFiBGC_analyses
Download HiFiBGC_0.1.13_Run.tar.gz
from figshare or zenodo, uncompress it, and put it under folder HiFiBGC_analyses
.
conda env create --file envs/snakemake.yml
conda env create --file envs/jupyterlab.yml
Run
conda activate snakemake
snakemake -s comparison_between_four_methods.smk --use-conda --cores 8 -p
Run
conda activate jupyterlab
jupyter lab
Thereafter, execute comparison_between_four_methods.ipynb
Run
conda activate snakemake
snakemake -s clinker.smk --use-conda --cores 8 -p
Run
conda activate jupyterlab
jupyter lab
Thereafter, execute clinker_analysis.ipynb
with jupyter kernel created from conda environment envs/raincloudplots.yml
.
Run
conda activate snakemake
snakemake -s upsetplot.smk --use-conda --cores 8 -p
Run
conda activate jupyterlab
jupyter lab
Thereafter, execute complete_BGCs_from_unmapped-reads.ipynb
with jupyter kernel created from conda environment envs/dna_features_viewer.yml
.
Download raw-read files for SRA-Ids: SRR15275213 (Human), ERR7015089 (Sludge), SRR10963010 (Sheep) and SRR15214153 (Chicken). And put them under the folder raw
with names human.fastq
, sludge.fastq
, sheep.fastq
and chicken.fastq
.
Run
conda activate snakemake
snakemake -s sequence_stats.smk --use-conda --cores 8 -p
Download mibig_gbk_3.1.tar.gz, uncompress it, and put it under folder HiFiBGC_analyses
.
Download BiG-SLICE database, uncompress it, and put it under folder HiFiBGC_analyses
.
Run
conda activate jupyterlab
jupyter lab
Thereafter, execute BGC_databases.ipynb