by Akshay Bhat
Deep Video Analytics is a platform for indexing and extracting information from videos and images. With latest version of docker installed correctly, you can run Deep Video Analytics in minutes locally (even without a GPU) using a single command.
For installation instructions & demo please visit https://www.deepvideoanalytics.com
- For a quick overview we strongly recommend going through the presentation in readme.pdf
- OCR example has been moved to /docs/experiments/ocr directory.
- More experiments coming soon!
We provide instructions for developing, testing and deploying DVA.
-
deploy/compose/dev contains docker-compose files for interactively developing DVA by using host server directory mapped as a volume.
-
deploy/compose/test contains docker-compose files for testing cloud filesystem (s3, gcs) support.
-
deploy/compose/cpu contains docker-compose files for non-GPU single machine deployments on Linode, AWS, GCP etc.
-
deploy/compose/gpu contains docker-compose files for GPU single machine deployments on GCP, AWS etc.
-
deploy/kube contains files used for launching DVA in a scalable GKE + GCS setup, with and without GPUs.
- /client : Python client using DVA REST API
- /configs : ngnix config + defaults.py defining models + processing pipelines (can be replaced by mounting a volume)
- /deploy : Dockerfiles + Instructions for development, single machine deployment and scalable deployment with Kubernetes
- /docs : Documentation, tutorial and experiments
- /tests : Files required for testing
- /repos : Code copied from third party repos, e.g. Yahoo LOPQ, TF-CTPN etc.
- /server : dvalib + django server contains contains bulk of the code for UI, App and models.
- /logs : Empty dir for storing logs
Library | Link to the license |
---|---|
YAD2K | MIT License |
AdminLTE2 | MIT License |
FabricJS | MIT License |
Facenet | MIT License |
JSFeat | MIT License |
MTCNN | MIT License |
Insight Face | MIT License |
CRNN.pytorch | MIT License |
Original CRNN code by Baoguang Shi | MIT License |
Object Detector App using TF Object detection API | MIT License |
Plotly.js | MIT License |
CRF as RNN | MIT License |
Text Detection CTPN | MIT License |
SphereFace | MIT License |
Segment annotator | BSD 3-clause |
TF Object detection API | Apache 2.0 |
TF models/slim | Apache 2.0 |
TF models/delf | Apache 2.0 |
Youtube 8M feature extractor | Apache 2.0 |
CROW | Apache 2.0 |
LOPQ | Apache 2.0 |
Open Images Pre-trained network | Apache 2.0 |
Library | Link to the license |
---|---|
pqkmeans | MIT License |
faiss | BSD + PATENTS License |
- FFmpeg (not linked, called via a Subprocess)
- Tensorflow
- OpenCV
- Numpy
- Pytorch
- Docker
- Nvidia-docker
- Docker-compose
- All packages in requirements.txt
- All dependancies installed in CPU Dockerfile & GPU Dockerfile
Copyright 2016-2018, Akshay Bhat, All rights reserved.
Deep Video Analytics is nearing stable 1.0, we expect to release in Summer 2018. The license will be relaxed once a stable release version is reached. Please contact me for more information.