- reference from http://predictionio.incubator.apache.org/system/
- prepare training data
- prepare entity id map
- train model
- save model or just dump result
- coordinate dataset to algorithm
- subscribe for BUILD_MODEL command
- publish NEW_MODEL for engine
- builder service app
- load model or/and using dataset
- predict, recommend, or serve function
- coordinate model for API service(serving)
- subscribe NEW_MODEL command
- Flask API route
- API service app
- app.py for builder or api
- pyspark (1.6 or 2.0)
- keras (tensorflow & theano) - contribute from RC
- Iris classifier
- MoviesLens recommender
- Start iris service on port 5001, movielens service on port 5002
# should be execute the bin/start.sh firstly
# 1. it will export the enviornment python path
# 2. it will start the redis-server
# 3. (****) The following commands, the working space should be 'ROOT FOLDER' of this repository
# == IRIS DNN classifier ==
python sbin/app.py --func mining --service iris
python sbin/app.py --func api --service iris
# redis-cli: PUBLISH iris_mining BUILD_MODEL
# redis-cli: PUBLISH iris_api KILL
# == MovieLens recommender ==
python sbin/app.py --func mining --service movielens
python sbin/app.py --func api --service movielens
# redis-cli: PUBLISH movie_mining BUILD_MODEL
# redis-cli: PUBLISH movie_api KILL
- Routes