It is currently incomplete. It will be still updated.
-
Three class-balanced pediatric radiograph datasets (PedXnets) by radiographic views labeling have been constructed.
-
Robust representation was developed by a radiographic views recognition task on the PedXnets.
-
Radiographic view representations using Model-PedXNets have been validated by applying them to two pediatric medical tasks, which showed better performance than Model-Baseline, and even equivalent and better performance than Model-ImageNet.
This repository provides the official implementation code of PedXnet in the following paper:
Supervised representation learning based on various levels of pediatric radiographic views for transfer learning
Authors: Sunggu Kyung, Miso Jang, Seungju Park, Hee Mang Yoon, Gil-Sun Hong, and Namkug Kim
MI2RL LAB
(Under revision...) Nature Scientific Report
- Linux
- CUDA 11.6
- Python 3.8.5
- Pytorch 1.13.1
$ git clone https://github.com/babbu3682/PedXnet.git
$ cd MTD-GAN/
$ pip install -r requirements.txt
Download the dataset from GRAZPEDWRI-DX.
- The processed dataset directory structure as follows:
data/
train
|-- 0001_1297860395_01_WRI-L1_M014.png
|-- 0001_1297860435_01_WRI-L2_M014.png
.
.
.
valid
|-- 0010_0604034401_01_WRI-L1_M014.png
|-- 0010_0604034442_01_WRI-L2_M014.png
.
.
.
test
|-- 0066_1261433016_01_WRI-L1_M011.png
|-- 0066_1261433167_01_WRI-L2_M011.png
.
.
.
• train:
CUDA_VISIBLE_DEVICES=4 python -W ignore train.py \
--dataset 'GRAZPEDWRI_DX' \
--train-batch-size 20 \
--valid-batch-size 20 \
--train-num-workers 20 \
--valid-num-workers 20 \
--model 'Downtask_General_Fracture_PedXNet_30Class' \
--loss 'Downtask_GRAZPEDWRI_DX_Loss' \
--optimizer 'adam' \
--scheduler 'poly_lr' \
--epochs 200 \
--warmup-epochs 5 \
--lr 1e-4 \
--min-lr 1e-6 \
--multi-gpu-mode 'Single' \
--device 'cuda' \
--print-freq 10 \
--save-checkpoint-every 1 \
--checkpoint-dir '/workspace/sunggu/3.Child/PedXnet_Code_Factory/checkpoints/Fracture/GRAZPEDWRI_DX_InceptionV3_PedXNet_30Class' \
--save-dir '/workspace/sunggu/3.Child/PedXnet_Code_Factory/predictions/train/Fracture/GRAZPEDWRI_DX_InceptionV3_PedXNet_30Class' \
--memo 'inceptionV3, test, node14'
• test:
CUDA_VISIBLE_DEVICES=2 python -W ignore test.py \
--dataset 'GRAZPEDWRI_DX' \
--test-batch-size 20 \
--test-num-workers 20 \
--model 'Downtask_General_Fracture_PedXNet_30Class' \
--loss 'Downtask_GRAZPEDWRI_DX_Loss' \
--multi-gpu-mode 'Single' \
--device 'cuda' \
--checkpoint-dir '/workspace/sunggu/3.Child/PedXnet_Code_Factory/checkpoints/Fracture/GRAZPEDWRI_DX_InceptionV3_PedXNet_30Class_TEST' \
--save-dir '/workspace/sunggu/3.Child/PedXnet_Code_Factory/predictions/test/Fracture/GRAZPEDWRI_DX_InceptionV3_PedXNet_30Class_TEST' \
--resume "/workspace/sunggu/3.Child/PedXnet_Code_Factory/checkpoints/Fracture/GRAZPEDWRI_DX_InceptionV3_PedXNet_30Class/epoch_?_checkpoint.pth" \
--memo 'inceptionV3, test, node14' \
--epoch ?
We indeed welcome the opportunity to make our dataset and model publicly available, to foster collaboration and further research within the community. However, regarding the dataset, as it comprises medical data, it must receive approval from the Asan Hospital Institutional Review Board (IRB). Therefore, the dataset will be made available on a request-only basis. Please contact us by email by filling out the appropriate form.
If you use this code for your research, please cite our papers:
⏳ It's scheduled to be uploaded soon.
We acknowledge the open-source libraries, including the Albumentations.
Project is distributed under MIT License