IDRND Anti-spoofing Challenge Solution
# prepare data & train 5 folds
python run_nn.py prepare-folds \
--in-dir=./data/train \
--out-csv=./data/train/dataset.csv \
--holdout-csv=./data/train/holdout.csv \
--n-folds=5 \
--holdout-size=0.2
bash run.sh --dataset train \
--model resnet18 \
--n-epochs 30 \
--batch-size 256 \
--n-workers 4 \
--fast
python run_nn.py distil-model \
--model=resnet18 \
--in-weights=./models/easy_gold.pth \
--out-weights=./models/easy_gold.pth
# infer
python run_nn.py infer \
--in-csv=$PATH_INPUT/meta.csv \
--in-dir=$PATH_INPUT \
--out-csv=$PATH_OUTPUT/solution.csv \
--model=resnet18 \
--weights-path=./models/easy_gold.pth \
--batch-size=256 \
--n-workers=4
# prepare data & train model
python run_lbp.py prepare-cutout-datasets \
--in-dir=./data/train \
--out-dir-crops=./data/crops \
--out-dir-cutout=./data/cutout \
--verbose=True
python run_lbp.py prepare-lbp-dataset \
--dirpath=./data/crops \
--features-npy=./data/crops/features.npy \
--targets-csv=./data/crops/dataset.csv \
--verbose=True
python run_lbp.py train \
--features-npy=./data/crops/features.npy \
--targets-csv=./data/crops/dataset.csv \
--n-splits=5 \
--n-repeats=10 \
--logdir=./logs/lbp
# infer
python run_lbp.py infer \
--in-csv=$PATH_INPUT/meta.csv \
--in-dir=$PATH_INPUT \
--out-csv=$PATH_OUTPUT/solution.csv \
--weights-path=./logs/lbp/model.pkl
© Copyright 2019-present Yauheni Kachan. Licensed under the MIT License.