Simple and Lightweight Human Pose Estimation
Introduction
This is an official pytorch implementation of Simple and Lightweight Human Pose Estimation. The codes are developed based on the repository of HRNet.
Experimental Results
Results on MPII val set
Method | #Params | FLOPs | Head | Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Mean | Mean@0.1 |
---|---|---|---|---|---|---|---|---|---|---|---|
pose_resnet_501 | 34.0M | 12.0G | 96.4 | 95.3 | 89.0 | 83.2 | 88.4 | 84.0 | 79.6 | 88.5 | 34.0 |
lpn_50 | 2.9M | 1.3G | 96.56 | 95.33 | 88.51 | 83.50 | 88.84 | 84.00 | 79.81 | 88.64 | 34.12 |
Note:
- Flip test is used.
- Input size is 256x256.
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset
Method | #Params | FLOPs | AP | Ap .5 | AP .75 | AP (M) | AP (L) | AR | AR .5 | AR .75 | AR (M) | AR (L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pose_resnet_501 | 34.0M | 8.9G | 0.704 | 0.886 | 0.783 | 0.671 | 0.772 | 0.763 | 0.929 | 0.834 | 0.721 | 0.824 |
pose_resnet_1011 | 53.0M | 12.4G | 0.714 | 0.893 | 0.793 | 0.681 | 0.781 | 0.771 | 0.934 | 0.840 | 0.730 | 0.832 |
pose_resnet_1521 | 68.6M | 15.7G | 0.720 | 0.893 | 0.798 | 0.687 | 0.789 | 0.778 | 0.934 | 0.846 | 0.736 | 0.839 |
pose_hrnet_w322 | 28.5M | 7.1G | 0.744 | 0.905 | 0.819 | 0.708 | 0.810 | 0.798 | 0.942 | 0.865 | 0.757 | 0.858 |
pose_hrnet_w482 | 63.6M | 14.6G | 0.751 | 0.906 | 0.822 | 0.715 | 0.818 | 0.804 | 0.943 | 0.867 | 0.762 | 0.864 |
lpn_50 | 2.9M | 1.0G | 0.691 | 0.881 | 0.766 | 0.659 | 0.757 | 0.749 | 0.923 | 0.818 | 0.707 | 0.810 |
lpn_101 | 5.3M | 1.4G | 0.704 | 0.886 | 0.781 | 0.672 | 0.772 | 0.762 | 0.929 | 0.831 | 0.721 | 0.822 |
lpn_152 | 7.4M | 1.8G | 0.710 | 0.892 | 0.786 | 0.678 | 0.777 | 0.768 | 0.933 | 0.834 | 0.726 | 0.827 |
Note:
- Flip test is used.
- Input size is 256x192.
Inference Speed on Intel I7-8700K CPU
Note:
- Flip test is used when testing the inference speed.
- For higher FPS, you can make the FLIP_TEST false.
Installation and Preparation
Please refer to HRNet's quick start
Test
GoogleDrive)
Testing on MPII dataset using model zoo's models(python test.py \
--cfg experiments/mpii/lpn/lpn50_256x256_gd256x2_gc.yaml
GoogleDrive)
Testing on COCO val2017 dataset using model zoo's models(python test.py \
--cfg experiments/coco/lpn/lpn50_256x192_gd256x2_gc.yaml
References
[1] Simple Baselines for Human Pose Estimation and Tracking
[2] Deep High-Resolution Representation Learning for Human Pose Estimation