/gan

Some gan implementation pytorch.

Primary LanguagePythonMIT LicenseMIT

Generative Adversarial Networks

Some gan implementations with pytorch. Welcome to PR and issue.

Installation

$ git clone https://github.com/baojunshan/gan.git
$ cd gan/
$ pip3 install -r requirements.txt

Train Data

./*gan/utils.py contains ImageLoader class which can load train data. The input accepts incompressible pictures.

Usually, the data path should be like ./data/dataset_name/*.png. Some labelled data path should be like ./data/dataset_name/label_name/*.png. Otherwise, you can custom your ImageLoader to load data.

Contents

Model Paper Code Results
Base
 ├ GAN [2014.06] Generative Adversarial Networks Code Results
 ├ DCGAN [2015.11] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Code Results
 ├ LSGAN [2016.11]Least Squares Generative Adversarial Networks Code Results
 ├ WGAN [2017.01] Wasserstein GAN Code Results
 ├ WGAN-gp [2017.04] Improved Training of Wasserstein GANs Code Results
 ├ WGAN-div [2017.12]Wasserstein Divergence for GANs Code Results
 ├ SAGAN [Self-Attention Generative Adversarial Networks] Code Results
 └ PGGAN Results
Conditional
 ├ CGAN [2014.11] Conditional Generative Adversarial Nets Code Results
 ├ InfoGAN Results
 └ StyleGAN Results
Understanding
 ├ CCGAN Results
 ├ Pix2Pix Results
 ├ CycleGAN Results
 └ SRGAN Results

Implementations

GAN

$ cd gan
$ sh run_mnist.sh
$ sh run_anime.sh

DCGAN

$ cd dcgan
$ sh run_mnist.sh
$ sh run_anime.sh

LSGAN

$ cd lsgan
$ sh run_mnist.sh
$ sh run_anime.sh

WGAN

$ cd wgan
$ sh run_mnist.sh
$ sh run_anime.sh

WGAN-gp

$ cd wgan_gp
$ sh run_mnist.sh
$ sh run_anime.sh

WGAN-div

$ cd wgan_div
$ sh run_mnist.sh
$ sh run_anime.sh

SAGAN

PGGAN

CGAN

$ cd cgan
$ sh run_mnist.sh

InfoGAN

StyleGAN

CCGAN

Pix2Pix

CycleGAN

SRGAN