Some gan implementations with pytorch. Welcome to PR and issue.
$ git clone https://github.com/baojunshan/gan.git
$ cd gan/
$ pip3 install -r requirements.txt
./*gan/utils.py
contains ImageLoader
class which can load train data. The input accepts incompressible pictures.
- mnist(png): Baidu Cloud (password:ynz7)
- anime face(png): Baidu Could (password:nmj2)
Usually, the data path should be like
./data/dataset_name/*.png
. Some labelled data path should be like./data/dataset_name/label_name/*.png
. Otherwise, you can custom yourImageLoader
to load data.
Model | Paper | Code | Results |
---|---|---|---|
Base | |||
├ GAN | [2014.06] Generative Adversarial Networks | Code | Results |
├ DCGAN | [2015.11] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks | Code | Results |
├ LSGAN | [2016.11]Least Squares Generative Adversarial Networks | Code | Results |
├ WGAN | [2017.01] Wasserstein GAN | Code | Results |
├ WGAN-gp | [2017.04] Improved Training of Wasserstein GANs | Code | Results |
├ WGAN-div | [2017.12]Wasserstein Divergence for GANs | Code | Results |
├ SAGAN | [Self-Attention Generative Adversarial Networks] | Code | Results |
└ PGGAN | Results | ||
Conditional | |||
├ CGAN | [2014.11] Conditional Generative Adversarial Nets | Code | Results |
├ InfoGAN | Results | ||
└ StyleGAN | Results | ||
Understanding | |||
├ CCGAN | Results | ||
├ Pix2Pix | Results | ||
├ CycleGAN | Results | ||
└ SRGAN | Results |
$ cd gan
$ sh run_mnist.sh
$ sh run_anime.sh
$ cd dcgan
$ sh run_mnist.sh
$ sh run_anime.sh
$ cd lsgan
$ sh run_mnist.sh
$ sh run_anime.sh
$ cd wgan
$ sh run_mnist.sh
$ sh run_anime.sh
$ cd wgan_gp
$ sh run_mnist.sh
$ sh run_anime.sh
$ cd wgan_div
$ sh run_mnist.sh
$ sh run_anime.sh
$ cd cgan
$ sh run_mnist.sh