This is the PyTorch implementation of the paper:
Baoyu Jing, Chanyoung Park and Hanghang Tong, HDMI: High-order Deep Multiplex Infomax, WWW'2021
- Python 3.6
- numpy>=1.19.5
- scipy>=1.5.4
- scikit-learn>=0.24.1
- tqdm>=4.59.0
- torch>=1.6.0
- torchvision>=0.7.0
Packages can be installed via: pip install -r requirements.txt
.
For PyTorch, please install the version compatible with your machine.
The pre-processed data can be downloaded from here.
Please put the pre-processed data under the folder data
.
Each pre-processed dataset is a dictionary containing the following keys:
train_idx
,val_idx
andtest_idx
are indices for training, validation and testing;label
corresponds to the labels of the nodes;- the layer names of the dataset: e.g.,
MAM
andMDM
for theimdb
dataset.
- Download the pre-processed data from here
and put it to the folder
data
. - Specify the arguments in the
main.py
. - Run the code by
python main.py
.
Please cite the following paper, if you find the repository or the paper useful.
Baoyu Jing, Chanyoung Park and Hanghang Tong, HDMI: High-order Deep Multiplex Infomax, WWW'2021
@article{jing2021hdmi,
title={HDMI: High-order Deep Multiplex Infomax},
author={Jing, Baoyu and Park, Chanyoung and Tong, Hanghang},
journal={arXiv preprint arXiv:2102.07810},
year={2021}
}