/soft-posit-gitlab

Primary LanguageCOtherNOASSERTION

SoftPosit

This version (0.4.1) supports:

32-bit with two exponent bit (posit32_t).  -> Not exhaustively tested

16-bit with one exponent bit (posit16_t). 

8-bit with zero exponent bit (posit8_t). 

2-bit to 32-bit with two exponent bits (posit_2_t) -> Not fast : Using 32-bits in the background to store all sizes.
    Exhaustively tested for X=(2:32) : pX2_rint, pX2_to_pX2, pX2_to_i32/64, pX2_to_ui32/64, pX2_sqrt, ui/i32_to_pX2
    Exhaustively tested for X=(2:13) : ui64_to_pX2, i64_to_pX2
    Exhaustively tested for X=(2:20) : pX2_add, pX2_sub, pX2_mul, pX2_div
    Exhaustively tested for X=(2:21) : pX2_mul
    Exhaustively tested for X=(2:15) : pX2_mulAdd
    Exhaustively tested for X=(2:14) : quireX2_fdp_add, quireX2_fdp_sub (using quire32 as the underlying code)

This code is tested on

  • GNU gcc (SUSE Linux) 4.8.5
  • Apple LLVM version 9.1.0 (clang-902.0.39.2)
  • Windows 10 (Mingw-w64)

Please note that the same Makefile in build/Linux-x86_64-GCC is used for all 3 operating systems.

All posit8_t and posit16_t operations are exhaustively tested with exception of p16_mulAdd and q16_fdp_add/sub operations.

posit32_t operations are still being tested exhaustively for correctness. It will take weeks to months before these tests complete.

Versions are offered

Examples

A 8-bit example on how to use the code to add:

#include "softposit.h"

int main (int argc, char *argv[]){

    posit8_t pA, pB, pZ;
    pA = castP8(0xF2);
    pB = castP8(0x23);

    pZ = p8_add(pA, pB);

    //To check answer by converting it to double
    double dZ = convertP8ToDouble(pZ);
    printf("dZ: %.15f\n", dZ);

    //To print result in binary
    uint8_t uiZ = castUI(pZ);
    printBinary((uint64_t*)&uiZ, 8);
    
    return 0;

}

A 16-bit example on how to use the code to multiply:

#include "softposit.h"

int main (int argc, char *argv[]){

    posit16_t pA, pB, pZ;
    pA = castP16(0x0FF2);
    pB = castP16(0x2123);

    pZ = p16_mul(pA, pB);

   //To check answer by converting it to double
    double dZ = convertP16ToDouble(pZ);
    printf("dZ: %.15f\n", dZ);

    //To print result in binary
    uint16_t uiZ = castUI(pZ);
    printBinary((uint64_t*)&uiZ, 16);

    return 0;
}

A 24-bit (es=2) example on how to use the code:

#include "softposit.h"

int main (int argc, char *argv[]){

    posit_2_t pA, pB, pZ;
    pA.v = 0xF2; //this is to set the bits (method 1)
    pB = castPX2(0x23); //this is to set the bits (method 2)

    pZ = pX2_add(pA, pB, 24);

    //To check answer by converting it to double
    double dZ = convertPX2ToDouble(pZ);
    printf("dZ: %.40f\n", dZ);

    //To print result in binary
    printBinaryPX((uint32_t*)&pZ.v, 24);
    
    //To print result as double
    printf("result: %.40f\n", convertPX2ToDouble(pZ));
    
    return 0;

}

For deep learning, please use quire.

//Convert double to posit
posit16_t pA = convertDoubleToP16(1.02783203125 );
posit16_t pB = convertDoubleToP16(0.987060546875);
posit16_t pC = convertDoubleToP16(0.4998779296875);
posit16_t pD = convertDoubleToP16(0.8797607421875);

quire16_t qZ;

//Set quire to 0
qZ = q16_clr(qZ);

//accumulate products without roundings
qZ = q16_fdp_add(qZ, pA, pB);
qZ = q16_fdp_add(qZ, pC, pD);

//Convert back to posit
posit16_t pZ = q16_to_p16(qZ);

//To check answer
double dZ = convertP16ToDouble(pZ);

Build and link

Build - softposit.a

Please note that only 64-bit systems are supported. For Mac OSX and Linux, the same Makefile is used.

Note that architecture specific optimisation is removed. To get maximum speed, please update OPTIMISATION flag in build/Linux-x86_64-GCC/Makefile.

cd SoftPosit/build/Linux-x86_64-GCC
make -j6 all

Link - softposit.a

If your source code is for example "main.c" and you want to create an executable "main". Assume that SoftPosit is installed and installed in the same directory (installing in the same directory is NOT recommended).

gcc -lm -o main \
    main.c SoftPosit/build/Linux-x86_64-GCC/softposit.a  -ISoftPosit/source/include -O2 

Features

Main Posit Functionalities:

Add :

 posit16_t p16_add(posit16_t, posit16_t)
 
 posit8_t p8_add(posit8_t, posit8_t)

Subtract :

posit16_t p16_sub(posit16_t, posit16_t)

posit8_t p8_sub(posit8_t, posit8_t)

Divide :

posit16_t p16_div(posit16_t, posit16_t)

posit8_t p8_div(posit8_t, posit8_t)

Multiply :

posit16_t p16_mul(posit16_t, posit16_t)

posit8_t p8_mul(posit8_t, posit8_t)

Fused Multiply Add :

posit16_t p16_mulAdd(posit16_t, posit16_t, posit16_t)

posit8_t p8_mulAdd(posit8_t, posit8_t, posit8_t)


Note: p16_mulAdd(a, b, c) <=> a*b + c

Main Quire Functionalities

Fused dot product-add :

quire16_t q16_fdp_add(quire16_t, posit16_t, posit16_t)

quire8_t q16_fdp_add(quire8_t, posit8_t, posit8_t)

Note: q8_fdp_add (a, b, c) <=> a + b*c

Fused dot product-subtract :

quire16_t q16_fdp_sub(quire16_t, posit16_t, posit16_t)

quire8_t q8_fdp_sub(quire8_t, posit8_t, posit8_t)

Set quire variable to zero :

quire16_t q16_clr(quire16_t)

quire8_t q8_clr(quire8_t)

Convert quire to posit :

posit16_t q16_to_p16(quire16_t)

posit8_t q8_to_p8(quire8_t)

Functionalites in Posit Standard

Square root :

posit16_t p16_sqrt(posit16_t)

posit8_t p8_sqrt(posit8_t)

Round to nearest integer :

posit16_t p16_roundToInt(posit16_t)

posit8_t p8_roundToInt(posit8_t)

Check equal :

bool p16_eq( posit16_t, posit16_t )

bool p8_eq( posit8_t, posit8_t )

Check less than equal :

bool p16_le( posit16_t, posit16_t )

bool p8_le( posit8_t, posit8_t )

Check less than :

bool p16_lt( posit16_t, posit16_t )

bool p8_lt( posit8_t, posit8_t )

Convert posit to integer (32 bits) :

int_fast32_t p16_to_i32( posit16_t )

int_fast32_t p8_to_i32( posit8_t )

Convert posit to long long integer (64 bits) :

int_fast64_t p16_to_i64( posit16_t)

int_fast64_t p8_to_i64( posit8_t)

Convert unsigned integer (32 bits) to posit:

posit16_t ui32_to_p16( uint32_t a )

posit8_t ui32_to_p8( uint32_t a )

Convert unsigned long long int (64 bits) to posit:

posit16_t ui64_to_p16( uint64_t a )

posit8_t ui64_to_p8( uint64_t a )

Convert integer (32 bits) to posit:

posit16_t i32_to_p16( int32_t a )

posit8_t i32_to_p8( uint32_t a )

Convert long integer (64 bits) to posit:

posit16_t i64_to_p16( int64_t a )

posit8_t i64_to_p8( uint64_t a )

Convert posit to unsigned integer (32 bits) :

uint_fast32_t p16_to_ui32( posit16_t )

uint_fast32_t p8_to_ui32( posit8_t )

Convert posit to unsigned long long integer (64 bits) :

uint_fast64_t p16_to_ui64( posit16_t)

uint_fast64_t p8_to_ui64( posit8_t)

Convert posit to integer (32 bits) :

uint_fast32_t p16_to_i32( posit16_t )

uint_fast32_t p8_to_i32( posit8_t )

Convert posit to long long integer (64 bits) :

uint_fast64_t p16_to_i64( posit16_t)

uint_fast64_t p8_to_i64( posit8_t)

Convert posit to posit of another size :

posit8_t p16_to_p8( posit16_t )

posit32_t p16_to_p32( posit16_t )

posit16_t p8_to_p16( posit8_t )

posit32_t p8_to_p32( posit8_t )

Helper Functionalites (NOT in Posit Standard)

Convert posit to double (64 bits) :

double convertP16ToDouble(posit16_t)

double convertP8ToDouble(posit8_t)

Convert double (64 bits) to posit :

posit16_t convertDoubleToP16(double)

posit8_t convertDoubleToP8(double)

Cast binary expressed in unsigned integer to posit :

posit16_t castP16(uint16_t)

posit8_t castP8(uint8_t)

Cast posit into binary expressed in unsigned integer

uint16_t castUI(posit16_t)

uint8_t castUI(posit8_t)

Build and Link

Build and link your C++ program to SoftPosit.a (C)

Please compile your executable with g++ and not gcc.

g++ -std=gnu++11 -o main \
	../source/testmain.cpp \
	../../SoftPosit/source/../build/Linux-x86_64-GCC/softposit.a  \
	-I../../SoftPosit/source/../build/Linux-x86_64-GCC  -O2

Example

Example of testmain.cpp

#include "softposit_cpp.h"

int main(int argc, char *argv[]){
	posit16 x = 1;
	posit16 y = 1.5;
	posit8 x8 = 1;
	quire16 q;
	quire8 q8;

	x += p16(1.5)*5.1;

	printf("%.13f  sizeof: %d\n", x.toDouble(), sizeof(posit16));

	x = q.qma(4, 1.2).toPosit();
	printf("%.13f  sizeof: %d\n", x.toDouble(), sizeof(quire16));

	x8 = q8.qma(4, 1.2).toPosit();
	printf("%.13f  sizeof: %d\n", x8.toDouble(), sizeof(quire8));
	
	std::cout << x;

	return 0;
}


Functionalities

Main functionalities

  • Posit types: posit16, posit8
  • Fused-multiply-add:
    • posit16 fma(posit16, posit16, posit16)
    • posit18 fma(posit18, posit18, posit8)
  • Square root:
    • posit16 sqrt(posit16)
    • posit8 sqrt(posit8)
  • roundToInt:
    • posit16 rint(posit16)
    • posit8 rint(posit8)
  • Supported operators
    • +
    • +=
    • -
    • -=
    • *
    • *=
    • /
    • /=
    • <<
    • <<=
    • >>
    • >>=
    • &
    • &=
    • |
    • |=
    • ^
    • ^=
    • &&
    • ||
    • ++
    • --
    • ==
    • ~
    • !
    • !=
    • *
    • <
    • *=
    • <=
  • Posit to Double:
    • double (instance of posit).toDouble()
  • Double to Posit:
    • posit16 p16(double)
    • posit8 p8(double)
  • Posit to NaR:
    • posit16 (instance of posit16).toNaR()
    • posit8 (instance of posit8).toNaR()

Quire functionalities (particularly for deep learning)

  • Quire types: quire16, quire8 (when declared, quire is initiated to zero)
  • Clear quire to zero:
    • (instance of quire16).clr()
  • Quire multiply add (fused)
    • (instance of quire16).fma(quire16)
    • (instance of quire8).fma(quire8)
  • Quire multiply subtract (fused)
    • (instance of quire16).fms(quire16)
    • (instance of quire8).fms(quire8)
  • Convert quire to Posit
    • posit16 (instance of quire16).toPosit()
    • posit8 (instance of quire8).toPosit()
  • Check if quire is NaR
    • bool (instance of quire).isNaR()

Install via Julia package manager

> add https://github.com/milankl/SoftPosit.jl

Credits to Milan Klöwer.

Behind the scene

Build shared library

cd SoftPosit/build/Linux_x86_64_GCC/
make -j6 julia

Simple Tests

julia> t = ccall((:convertDoubleToP16, "/path/to/SoftPosit/build/Linux-x86_64-GCC/softposit.so"), UInt16, (Float64,),1.0)
0x4000

julia> t = ccall((:convertDoubleToP16, "/path/to/SoftPosit/build/Linux-x86_64-GCC/softposit.so"), UInt16, (Float64,),-1.0)
0xc000